Skip to Content
Merck
  • Impact of the grinding process on the quantification of ethyl glucuronide in hair using a validated UPLC-ESI-MS-MS method.

Impact of the grinding process on the quantification of ethyl glucuronide in hair using a validated UPLC-ESI-MS-MS method.

Journal of analytical toxicology (2014-10-03)
Natalie Kummer, Sarah M R Wille, Vincent Di Fazio, Maria Del Mar Ramírez Fernández, Michel Yegles, Willy E E Lambert, Nele Samyn
ABSTRACT

The Society of Hair Testing (SoHT) has provided cutoffs for the quantification of ethyl glucuronide (EtG) in hair to indicate occasional or chronic/excessive alcohol consumption. Although several sensitive methods have been reported, past proficiency test results show a lack of reproducibility. An ultra-performance liquid chromatographic mass spectrometric method (LLOQ of 10 pg EtG/mg hair) has been validated according to the international guidelines, including the successful participation in five proficiency tests. This method was subsequently used to evaluate the impact of different grinding conditions (cut, weakly or extensively pulverized hair samples) on the final measured EtG concentration. Hair from alcohol consumers (n = 2) and commercially available quality control samples (QCs) (n = 2) was used. For the QCs, extensive pulverization led to a significantly higher amount of measured EtG. In the hair samples obtained from volunteers, cut or weakly pulverized hair resulted in EtG concentrations below the LLOQ, while the mean concentrations of 14 and 40 pg EtG/mg hair were determined after extensive pulverization. Differences in sample preparation could partially explain inter-laboratory variability. As the differences in results can lead to a different interpretation even when applying the SoHT cutoffs, it is of interest to standardize sample preparation techniques in the field of EtG hair testing.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, NMR reference standard
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Formic acid, reagent grade, ≥95%
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Supelco
Acetonitrile, analytical standard