Skip to Content
Merck
  • Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53.

Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53.

PLoS genetics (2015-03-20)
Kristina Kirschner, Shamith A Samarajiwa, Jonathan M Cairns, Suraj Menon, Pedro A Pérez-Mancera, Kosuke Tomimatsu, Camino Bermejo-Rodriguez, Yoko Ito, Tamir Chandra, Masako Narita, Scott K Lyons, Andy G Lynch, Hiroshi Kimura, Tetsuya Ohbayashi, Simon Tavaré, Masashi Narita
ABSTRACT

The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
3-(Benzyldimethylammonio)propanesulfonate, BioXtra, ≥99.0% (HPCE)
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
2-Propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
2-Propanol, for molecular biology, BioReagent, ≥99.5%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
USP
2-Propanol, United States Pharmacopeia (USP) Reference Standard