Skip to Content
Merck
  • C. elegans Punctin specifies cholinergic versus GABAergic identity of postsynaptic domains.

C. elegans Punctin specifies cholinergic versus GABAergic identity of postsynaptic domains.

Nature (2014-06-05)
Bérangère Pinan-Lucarré, Haijun Tu, Marie Pierron, Pablo Ibáñez Cruceyra, Hong Zhan, Christian Stigloher, Janet E Richmond, Jean-Louis Bessereau
ABSTRACT

Because most neurons receive thousands of synaptic inputs, the neuronal membrane is a mosaic of specialized microdomains where neurotransmitter receptors cluster in register with the corresponding presynaptic neurotransmitter release sites. In many cases the coordinated differentiation of presynaptic and postsynaptic domains implicates trans-synaptic interactions between membrane-associated proteins such as neurexins and neuroligins. The Caenorhabditis elegans neuromuscular junction (NMJ) provides a genetically tractable system in which to analyse the segregation of neurotransmitter receptors, because muscle cells receive excitatory innervation from cholinergic neurons and inhibitory innervation from GABAergic neurons. Here we show that Ce-Punctin/madd-4 (ref. 5), the C. elegans orthologue of mammalian punctin-1 and punctin-2, encodes neurally secreted isoforms that specify the excitatory or inhibitory identity of postsynaptic NMJ domains. These proteins belong to the ADAMTS (a disintegrin and metalloprotease with thrombospondin repeats)-like family, a class of extracellular matrix proteins related to the ADAM proteases but devoid of proteolytic activity. Ce-Punctin deletion causes the redistribution of synaptic acetylcholine and GABAA (γ-aminobutyric acid type A) receptors into extrasynaptic clusters, whereas neuronal presynaptic boutons remain unaltered. Alternative promoters generate different Ce-Punctin isoforms with distinct functions. A short isoform is expressed by cholinergic and GABAergic motoneurons and localizes to excitatory and inhibitory NMJs, whereas long isoforms are expressed exclusively by cholinergic motoneurons and are confined to cholinergic NMJs. The differential expression of these isoforms controls the congruence between presynaptic and postsynaptic domains: specific disruption of the short isoform relocalizes GABAA receptors from GABAergic to cholinergic synapses, whereas expression of a long isoform in GABAergic neurons recruits acetylcholine receptors to GABAergic NMJs. These results identify Ce-Punctin as a previously unknown synaptic organizer and show that presynaptic and postsynaptic domain identities can be genetically uncoupled in vivo. Because human punctin-2 was identified as a candidate gene for schizophrenia, ADAMTS-like proteins may also control synapse organization in the mammalian central nervous system.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium chloride solution, 0.1 M
SAFC
HEPES
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Magnesium chloride solution, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, ≥99.5% (titration)
SAFC
HEPES
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis