- Mercurochrom can be used for the histochemical demonstration and microphotometric quantitation of both protein thiols and protein (mixed) disulfides.
Mercurochrom can be used for the histochemical demonstration and microphotometric quantitation of both protein thiols and protein (mixed) disulfides.
Mercurochrom [2,7-dibromo-4-(hydroxymercuri)-fluorescein disodium salt] used for staining of protein thiols in addition binds to other groups of proteins. Experimental evidence is provided that mercurochrom bound to non-thiol groups forms a 1:1 adduct with protein (mixed) disulfides. The disulfide contents of three different types of cells determined biochemically correlated with the corresponding mean integrated optical densities determined microphotometrically after mercurochrom staining of groups other than thiols. Intracellular disulfide exchange has been studied, leading to a transformation of protein mixed disulfides to protein disulfides and an equimolar loss of protein thiols. Protein mixed disulfides were generated from protein thiols using both methyl methanethiosulfonate (MMTS) and 2,2'-dihydroxy-6,6'-dinaphthyldisulfide (DDD). Loss of thiols as well as the equimolar increase of protein mixed disulfides were followed using both mercurochrom staining for thiols and for disulfides. Generation of protein mixed disulfides due to the DDD reaction was also followed by azocoupling with Fast blue B. On the basis of the observed stoichiometry between the loss of protein thiols and the quantity, increase or conversion of protein disulfides determined microphotometrically using both mercurochrom staining and DDD Fast blue B staining, we conclude that: (1) 1 mol of mercurochrom is bound per mol of protein (mixed) disulfide; and (2) the molar absorptivity of mercurochrom bound to disulfides is epsilon 520 = 34940. This study demonstrates that mercurochrom can be used for the quantitative determination of the oxidative status of protein thiols in cells.