- Effect of biosynthetic intermediates and citrate on the phenyllactic and hydroxyphenyllactic acids production by Lactobacillus plantarum CRL 778.
Effect of biosynthetic intermediates and citrate on the phenyllactic and hydroxyphenyllactic acids production by Lactobacillus plantarum CRL 778.
To evaluate the influence of biosynthetic precursors, intermediates and electron acceptors on the production of antifungal compounds [phenyllactic acid (PLA) and hydroxyphenyllactic acid (OH-PLA)] by Lactobacillus plantarum CRL 778, a strain isolated from home-made sourdough. Growth of fermentative activity and antifungal compounds production by Lact. plantarum CRL 778 were evaluated in a chemically defined medium (CDM) supplemented with biosynthetic precursors [phenylalanine (Phe), tyrosine (Tyr)], intermediates [glutamate (Glu), alpha-ketoglutarate (α-KG)] and electron acceptors [citrate (Cit)]. Results showed that the highest PLA production (0.26 mmol l(-1)), the main antifungal compound produced by Lact. plantarum CRL 778, occurred when greater concentrations of Phe than Tyr were present. Both PLA and OH-PLA yields were increased 2-folds when Cit was combined with α-KG instead of Glu at similar Tyr/Phe molar ratio. Similarly, glutamate dehydrogenase (GDH) activity was significantly (P < 0.01) stimulated by α-KG and Cit in Glu-free medium. Phe was the major stimulant for PLA formation; however, Cit could increase both PLA and OH-PLA synthesis by Lact. plantarum CRL 778 probably due to an increase in oxidized NAD(+). This effect, as well as the GDH activity, was enhanced by α-KG and down regulated by Glu. This is the first study where the role of Glu and GDH activity in the PLA and OH-PLA synthesis was evidenced in sourdough lactic acid bacteria (LAB) using a CDM. These results contribute to the knowledge on the antifungal compounds production by sourdough LAB with potential applications on the baked goods.