- Developmental Anomalies in Human Teeth: Odontoblastic Differentiation in Hamartomatous Calcifying Hyperplastic Dental Follicles Presenting with DSP, Nestin, and HES1.
Developmental Anomalies in Human Teeth: Odontoblastic Differentiation in Hamartomatous Calcifying Hyperplastic Dental Follicles Presenting with DSP, Nestin, and HES1.
Hyperplastic dental follicles (HDFs) represent odontogenic hamartomatous lesions originating from the pericoronal tissues and are often associated with impacted or embedded teeth. These lesions may occasionally feature unique calcifying bodies, known as calcifying whorled nodules (CWNs), characterized by stromal cells arranged in a whorled or spiral fashion. CWNs are typically observed in multiple calcifying hyperplastic dental follicles or regional odontodysplasia. In our study, we examined 40 cases of HDFs, including nine instances with characteristics of CWNs, referred to as calcifying hyperplastic dental follicles (CHDFs), which are infrequently accompanied by odontodysplasia. The median ages of the HDFs and CHDFs were 16 (ranging from 3 to 66) and 15 (ranging from 11 to 50) years, respectively. The lower third molars were the most frequently affected by HDSFs and CHDFs, followed by the upper canines. A histological examination was conducted on all 40 cases, with an immunohistochemical analysis performed on 21 of them. Among the cases with CWN, nine affected a single embedded tooth, with one exception. CWNs exhibited diverse calcifications featuring sparse or entirely deposited psammoma bodies, and some displayed dentinoid formation. Immunohistochemically, the stromal cells of HDFs were frequently positive for CD56 and nestin. By contrast, CWNs were negative for CD56 but positive for nestin as well as hairy and enhancer split 1 (HES1), with a few dentin sialoprotein (DSP)-positive calcified bodies. Our results revealed that hamartomatous CHDFs can impact multiple and single-embedded teeth. CWNs composed of nestin and HES1-positive ectomesenchymal cells demonstrated the potential to differentiate into odontoblasts and contribute to dentin matrix formation under the influence of HES1. This study is the first report documenting odontoblastic differentiation in HDFs. The rare occurrence of HDFs and CHDFs contributes to limited comprehension. To prevent misdiagnosis, a better understanding of these conditions is necessary.