- Sodium Acetate Coated Tenofovir-Loaded Chitosan Nanoparticles for Improved Physico-Chemical Properties.
Sodium Acetate Coated Tenofovir-Loaded Chitosan Nanoparticles for Improved Physico-Chemical Properties.
It is hypothesized that sodium acetate (SA) can be used for in situ coating of drug loaded chitosan NPs for improved physico-chemical properties. Tenofovir (TFV) is used as a model drug. Uncoated chitosan NPs are prepared by ionic gelation. SA is generated in situ from half neutralization of acetic acid with sodium hydroxide, and coats chitosan NPs during freeze-drying. The NPs' physico-chemical properties [e.g., particle mean diameters (PMD) zeta potential (ζ), EE%, drug release profile, morphology] are characterized by dynamic light scattering, spectrophotometry, Korsmeyer-Peppas model, transmission electron microscopy (TEM), respectively. Melting point (MP), non-aqueous titration, Fourier transform infrared (FTIR) analysis, and powder X-ray diffractometry (XRD) pattern evaluate the SA coated chitosan NPs. The NPs' cytotoxicity on macrophages Raw 264.7 is assessed by neutral red, resazurin, nitrite oxide (NO) and cytokines assays. Collectively, FTIR, ζ, XRD, MP, and TEM data confirm that SA coats chitosan NPs. The PMD range is 136-348 nm (uncoated) and 171-379 nm (coated NPs). The ζ values range is +24.3-28.5 mV (uncoated) and 0.1-3.1 mV (coated NPs). The EE% ranges from 5.5 to 11.7% (uncoated NPs) and increased up to 86.3-92.7%(8-17-fold) after coating. The SA also prevents NPs aggregation during the freeze-drying and aqueous dispersion. The core-shell NPs exhibited a sustain release of TFV following anomalous transport mechanism (R(2) ~ 0.99). The coated NPs are non-cytotoxic (cell viability ~100%) and without any proinflammatory response. This SA coating chitosan NPs mechanism may be useful for (i) efficient encapsulation, (ii) stabilizing colloidal dispersions, (iii) controlling the release and solubility of bioactive agents.