Skip to Content
Merck
  • Dental pulp stem cells: a new cellular resource for corneal stromal regeneration.

Dental pulp stem cells: a new cellular resource for corneal stromal regeneration.

Stem cells translational medicine (2015-02-26)
Fatima N Syed-Picard, Yiqin Du, Kira L Lathrop, Mary M Mann, Martha L Funderburgh, James L Funderburgh
ABSTRACT

Corneal blindness afflicts millions of individuals worldwide and is currently treated by grafting with cadaveric tissues; however, there are worldwide donor tissue shortages, and many allogeneic grafts are eventually rejected. Autologous stem cells present a prospect for personalized regenerative medicine and an alternative to cadaveric tissue grafts. Dental pulp contains a population of adult stem cells and, similar to corneal stroma, develops embryonically from the cranial neural crest. We report that adult dental pulp cells (DPCs) isolated from third molars have the capability to differentiate into keratocytes, cells of the corneal stoma. After inducing differentiation in vitro, DPCs expressed molecules characteristic of keratocytes, keratocan, and keratan sulfate proteoglycans at both the gene and the protein levels. DPCs cultured on aligned nanofiber substrates generated tissue-engineered, corneal stromal-like constructs, recapitulating the tightly packed, aligned, parallel fibrillar collagen of native stromal tissue. After injection in vivo into mouse corneal stroma, human DPCs produced corneal stromal extracellular matrix containing human type I collagen and keratocan and did not affect corneal transparency or induce immunological rejection. These findings demonstrate a potential for the clinical application of DPCs in cellular or tissue engineering therapies for corneal stromal blindness.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Osmium tetroxide, ACS reagent, ≥98.0%
Sigma-Aldrich
Osmium tetroxide, ReagentPlus®, 99.8%
Sigma-Aldrich
Anti-Collagen Type I Antibody, clone 5D8-G9, clone 5D8-G9, Chemicon®, from mouse
Sigma-Aldrich
Os EnCat® 40, extent of labeling: 0.3 mmol/g Os loading
Supelco
Acrylamide, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
1,1,2,2-Tetrabromoethane, 98%
Sigma-Aldrich
Glutaraldehyde solution, technical, ~50% in H2O (5.6 M)
Sigma-Aldrich
1,1,2,2-Tetrabromoethane, purum p.a., for separation (of mineral compounds), ≥98.0% (GC)
Sigma-Aldrich
Acrylamide, purum, ≥98.0% (GC)
Sigma-Aldrich
Acrylamide, for Northern and Southern blotting, powder blend
Supelco
Acrylamide, analytical standard
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Acrylamide, for molecular biology, ≥99% (HPLC)
Sigma-Aldrich
Acrylamide, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Osmium tetroxide, Sealed ampule.
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Acrylamide, suitable for electrophoresis, ≥99% (HPLC), powder
Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 4% in H2O
Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 2% in H2O
Supelco
Acrylamide solution, 40% in H2O, for molecular biology
Sigma-Aldrich
Acrylamide solution, 40%, suitable for electrophoresis, sterile-filtered
Sigma-Aldrich
Osmium tetroxide solution, 4 wt. % in H2O
Sigma-Aldrich
Osmium tetroxide solution, 2.5 wt. % in tert-butanol