- Skeletal muscle biopsy analysis in reducing body myopathy and other FHL1-related disorders.
Skeletal muscle biopsy analysis in reducing body myopathy and other FHL1-related disorders.
FHL1 mutations have been associated with various disorders that include reducing body myopathy (RBM), Emery-Dreifuss-like muscular dystrophy, isolated hypertrophic cardiomyopathy, and some overlapping conditions. We report a detailed histochemical, immunohistochemical, electron microscopic, and immunoelectron microscopic analyses of muscle biopsies from 18 patients carrying mutations in FHL1: 14 RBM patients (Group 1), 3 Emery-Dreifuss muscular dystrophy patients (Group 2), and 1 patient with hypertrophic cardiomyopathy and muscular hypertrophy (Group 2). Group 1 muscle biopsies consistently showed RBs associated with cytoplasmic bodies. The RBs showed prominent FHL1 immunoreactivity whereas desmin, αB-crystallin, and myotilin immunoreactivity surrounded RBs. By electron microscopy, RBs were composed of electron-dense tubulofilamentous material that seemed to spread progressively between the myofibrils and around myonuclei. By immunoelectron microscopy, FHL1 protein was found exclusively inside RBs. Group 2 biopsies showed mild dystrophic abnormalities without RBs; only minor nonspecific myofibrillar abnormalities were observed under electron microscopy. Molecular analysis revealed missense mutations in the second FHL1 LIM domain in Group 1 patients and ins/del or missense mutations within the fourth FHL1 LIM domain in Group 2 patients. Our findings expand the morphologic features of RBM, clearly demonstrate the localization of FHL1 in RBs, and further illustrate major morphologic differences among different FHL1-related myopathies.