Skip to Content
Merck

Ultraviolet photofunctionalization of titanium implants.

The International journal of oral & maxillofacial implants (2014-01-24)
Takahiro Ogawa
ABSTRACT

In the face of growing demands and challenges in implant therapy, implant surfaces with improved biologic capabilities are required. This review paper summarizes the findings of recent in vitro and in vivo studies related to ultraviolet (UV) photofunctionalization of titanium. UV photofunctionalization is defined as an overall phenomenon of modification of titanium surfaces occuring after UV treatment, including the alteration of physicochemical properties and the enhancement of biologic capabilities. Bone morphogenesis around UV-treated titanium implants is distinctly improved compared with that seen around untreated control implants, leading to rapid and complete establishment of osseointegration with nearly 100% bone-to-implant contact in an animal model, as opposed to less than 55% for untreated implants. A series of in vitro studies demonstrated considerable enhancement of attachment, retention, and subsequent functional cascades of osteogenic cells derived from animals and humans after UV treatment. UV treatment converts titanium surfaces from hydrophobic to superhydrophilic and removes unavoidably contaminated hydrocarbons. UV-treated titanium surfaces also manifest a unique electrostatic status and act as direct cell attractants without the aid of ionic and organic bridges, which imparts a novel physicochemical functionality to titanium, which has long been understood as a bioinert material. UV treatment is simple and low in cost, and it has been proven effective for all types of titanium surfaces tested. These data suggest that UV photofunctionalization can be a novel, effective measure to improve implant therapy in the dental and orthopedic fields. Future research will focus on validating these findings in clinical studies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, 5-10 mm, ≥99.99% trace metals basis (purity exclusive of Na and K content)
Sigma-Aldrich
Titanium, foil, thickness 0.127 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.025 mm, 99.98% trace metals basis
Titanium, IRMM®, certified reference material, 0.5 mm wire
Sigma-Aldrich
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 1.0 mm, 99.99% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.81 mm, 99.7% trace metals basis
Titanium, wire reel, 5m, diameter 0.75mm, as drawn, 99.6+%
Titanium, rod, 200mm, diameter 8.0mm, as drawn, 99.99+%
Titanium, rod, 100mm, diameter 10mm, annealed, 99.6+%
Titanium, rod, 100mm, diameter 2mm, as drawn, 99.99+%
Titanium, rod, 500mm, diameter 6mm, annealed, 99.6+%
Titanium, wire reel, 25m, diameter 0.20mm, annealed, 99.6+%
Titanium, wire reel, 100m, diameter 0.75mm, as drawn, 99.6+%
Titanium, wire reel, 0.5m, diameter 1.0mm, as drawn, 99.6+%
Titanium, wire reel, 0.5m, diameter 1.0mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 2mm, annealed, 99.6+%
Titanium, rod, 100mm, diameter 5mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 5mm, annealed, 99.6+%
Titanium, rod, 100mm, diameter 2mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 25mm, annealed, 99.6+%
Titanium, wire reel, 20m, diameter 0.125mm, annealed, 99.6+%
Titanium, wire reel, 100m, diameter 0.25mm, as drawn, 99.6+%
Titanium, wire reel, 1m, diameter 0.25mm, as drawn, 99.6+%
Titanium, tube, 200mm, outside diameter 1.6mm, inside diameter 1.2mm, wall thickness 0.2mm, hard, 99.6+%
Titanium, mesh, 100x100mm, nominal aperture 0.19mm, wire diameter 0.23mm, 60x60 wires/inch, open area 20%, twill weave
Titanium, tube, 100mm, outside diameter 0.51mm, inside diameter 0.35mm, wall thickness 0.08mm, annealed, 99.6+%
Titanium, wire reel, 10m, diameter 0.125mm, annealed, 99.6+%
Titanium, wire reel, 25m, diameter 1.0mm, as drawn, 99.6+%