Skip to Content
Merck
  • Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly.

Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly.

Proceedings of the National Academy of Sciences of the United States of America (2013-04-12)
David Ecija, José I Urgel, Anthoula C Papageorgiou, Sushobhan Joshi, Willi Auwärter, Ari P Seitsonen, Svetlana Klyatskaya, Mario Ruben, Sybille Fischer, Saranyan Vijayaraghavan, Joachim Reichert, Johannes V Barth
ABSTRACT

The tessellation of the Euclidean plane by regular polygons has been contemplated since ancient times and presents intriguing aspects embracing mathematics, art, and crystallography. Significant efforts were devoted to engineer specific 2D interfacial tessellations at the molecular level, but periodic patterns with distinct five-vertex motifs remained elusive. Here, we report a direct scanning tunneling microscopy investigation on the cerium-directed assembly of linear polyphenyl molecular linkers with terminal carbonitrile groups on a smooth Ag(111) noble-metal surface. We demonstrate the spontaneous formation of fivefold Ce-ligand coordination motifs, which are planar and flexible, such that vertices connecting simultaneously trigonal and square polygons can be expressed. By tuning the concentration and the stoichiometric ratio of rare-earth metal centers to ligands, a hierarchic assembly with dodecameric units and a surface-confined metal-organic coordination network yielding the semiregular Archimedean snub square tiling could be fabricated.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cerium, ingot, under oil, 99.9% trace rare earth metals basis
Sigma-Aldrich
Cerium, chips