Skip to Content
Merck
  • Protein kinase involved in lung injury susceptibility: evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment.

Protein kinase involved in lung injury susceptibility: evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment.

Proceedings of the National Academy of Sciences of the United States of America (2003-05-06)
Mark S Wainwright, Janet Rossi, James Schavocky, Susan Crawford, David Steinhorn, Anastasia V Velentza, Magdalena Zasadzki, Vladimir Shirinsky, Yuzhi Jia, Jacques Haiech, Linda J Van Eldik, D Martin Watterson
ABSTRACT

Acute lung injury (ALI) associated with sepsis and iatrogenic ventilator-induced lung injury resulting from mechanical ventilation are major medical problems with an unmet need for small molecule therapeutics. Prevailing hypotheses identify endothelial cell (EC) layer dysfunction as a cardinal event in the pathophysiology, with intracellular protein kinases as critical mediators of normal physiology and possible targets for drug discovery. The 210,000 molecular weight myosin light chain kinase (MLCK210, also called EC MLCK because of its abundance in EC) is hypothesized to be important for EC barrier function and might be a potential therapeutic target. To test these hypotheses directly, we made a selective MLCK210 knockout mouse that retains production of MLCK108 (also called smooth-muscle MLCK) from the same gene. The MLCK210 knockout mice are less susceptible to ALI induced by i.p. injection of the endotoxin lipopolysaccharide and show enhanced survival during subsequent mechanical ventilation. Using a complementary chemical biology approach, we developed a new class of small-molecule MLCK inhibitor based on the pharmacologically privileged aminopyridazine and found that a single i.p. injection of the inhibitor protected WT mice against ALI and death from mechanical ventilation complications. These convergent results from two independent approaches demonstrate a pivotal in vivo role for MLCK in susceptibility to lung injury and validate MLCK as a potential drug discovery target for lung injury.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Rho Activation Assay Kit, PP1/PP2A Toolbox for the selective in vitro dephosphorylation of proteins.
Sigma-Aldrich
GSK3β Protein, active, 10 µg, Active, N-terminal His6-tagged recombinant human GSK3β with an H350L mutation, for use in Kinase Assays.