Skip to Content
Merck
  • Identification of the absorbed components and metabolites of Zhi-Zi-Da-Huang decoction in rat plasma by ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry.

Identification of the absorbed components and metabolites of Zhi-Zi-Da-Huang decoction in rat plasma by ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry.

Journal of pharmaceutical and biomedical analysis (2015-04-29)
Heyun Zhu, Kaishun Bi, Fei Han, Jiao Guan, Xiaoshu Zhang, Xinjuan Mao, Longshan Zhao, Qing Li, Xiaohong Hou, Ran Yin
ABSTRACT

Zhi-Zi-Da-Huang decoction (ZZDHD), consisting of Gardenia jasminoides Ellis, Rheum palmatum L., Citrus aurantium L. and Sojae Semen Praeparatum, is a widely used traditional Chinese medicine preparation for the treatment of acute or chronic hepatic diseases. In the present study, a sensitive and selective ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) method was developed to separate and identify the absorbed components and metabolites in rat plasma after oral administration of ZZDHD. The plasma samples were pretreated by protein precipitation and separated on a Shim-pack XR-ODS C18 column (75 mm × 3.0 mm, 2.2 μm) using a gradient elution program. Mass spectrometric detection was performed on an Agilent 6520 Q-TOF mass spectrometer equipped with electrospray ionization (ESI) source in positive and negative ion modes. By comparing the retention time, high resolution mass data of blank plasma and dosed plasma, a total of 43 constituents, including 21 prototype compounds and 22 metabolites were identified or tentatively characterized. Results indicated that glucuronidation and sulfation were the main metabolic pathways of iridoid glycosides and anthraquinones, glucuronidation was the main metabolic pathways of flavanone-related compounds. It is concluded the developed UHPLC-Q-TOF-MS method with high sensitivity and resolution is suitable for identifying and characterizing the absorbed components and metabolites of ZZDHD, and the results will provide essential data for further studying the relationship between the chemical components and pharmacological activity of ZZDHD.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Asperulosidic acid, ≥90% (LC/MS-ELSD)
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Methanol solution, (Methanol:Dimethyl sulfoxide 1:1 (v/v))
Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.