Skip to Content
Merck
  • Antiangiogenic actions of vascular endothelial growth factor-A165b, an inhibitory isoform of vascular endothelial growth factor-A, in human obesity.

Antiangiogenic actions of vascular endothelial growth factor-A165b, an inhibitory isoform of vascular endothelial growth factor-A, in human obesity.

Circulation (2014-08-15)
Doan T M Ngo, Melissa G Farb, Ryosuke Kikuchi, Shakun Karki, Stephanie Tiwari, Sherman J Bigornia, David O Bates, Michael P LaValley, Naomi M Hamburg, Joseph A Vita, Donald T Hess, Kenneth Walsh, Noyan Gokce
ABSTRACT

Experimental studies suggest that visceral adiposity and adipose tissue dysfunction play a central role in obesity-related cardiometabolic complications. Impaired angiogenesis in fat has been implicated in the development of adipose tissue hypoxia, capillary rarefaction, inflammation, and metabolic dysregulation, but pathophysiological mechanisms remain unknown. In this study, we examined the role of a novel antiangiogenic isoform of vascular endothelial growth factor-A (VEGF-A), VEGF-A165b, in human obesity. We biopsied paired subcutaneous and visceral adipose tissue in 40 obese subjects (body mass index, 45±8 kg/m(2); age, 45±11 years) during bariatric surgery and characterized depot-specific adipose tissue angiogenic capacity using an established ex vivo assay. Visceral adipose tissue exhibited significantly blunted angiogenic growth compared with subcutaneous fat (P<0.001) that was associated with marked tissue upregulation of VEGF-A165b (P=0.004). The extent of VEGF-A165b expression correlated negatively with angiogenic growth (r=-0.6, P=0.006). Although recombinant VEGF-A165b significantly impaired angiogenesis, targeted inhibition of VEGF-A165b with neutralizing antibody stimulated fat pad neovascularization and restored VEGF receptor activation. Blood levels of VEGF-A165b were significantly higher in obese subjects compared with lean control subjects (P=0.02), and surgical weight loss induced a marked decline in serumVEGF-A165b (P=0.003). We demonstrate that impaired adipose tissue angiogenesis is associated with overexpression of a novel antiangiogenic factor, VEGF-A165b, that may play a pathogenic role in human adiposopathy. Moreover, systemic upregulation of VEGF-A165b in circulating blood may have wider-ranging implications beyond the adipose milieu. VEGF-A165b may represent a novel area of investigation to gain further understanding of mechanisms that modulate the cardiometabolic consequences of obesity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
VEGF human, Animal-component free, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC), suitable for cell culture
Sigma-Aldrich
Vascular Endothelial Growth Factor human, VEGF, recombinant, expressed in E. coli, powder, suitable for cell culture
Sigma-Aldrich
Vascular Endothelial Growth Factor from mouse, VEGF, recombinant, expressed in E. coli, powder, suitable for cell culture
Sigma-Aldrich
DAPI, for nucleic acid staining