Skip to Content
Merck
  • Vertebral osteolytic defect due to cellulose particles derived from gauze fibers after posterior lumbar interbody fusion.

Vertebral osteolytic defect due to cellulose particles derived from gauze fibers after posterior lumbar interbody fusion.

Journal of neurosurgery. Spine (2014-09-27)
Shota Takenaka, Yoshihiro Mukai, Noboru Hosono, Kosuke Tateishi, Takeshi Fuji
ABSTRACT

Vertebral cystic lesions may be observed in pseudarthroses after lumbar fusion surgery. The authors report a rare case of pseudarthrosis after spinal fusion, accompanied by an expanding vertebral osteolytic defect induced by cellulose particles. A male patient originally presented at the age of 69 years with leg and low-back pain caused by a lumbar isthmic spondylolisthesis. He underwent a posterior lumbar interbody fusion, and his neurological symptoms and pain resolved within a year but recurred 14 months after surgery. Radiological imaging demonstrated a cystic lesion on the inferior endplate of L-5 and the superior endplate of S-1, which rapidly enlarged into a vertebral osteolytic defect. The patient underwent revision surgery, and his low-back pain resolved. A histopathological examination demonstrated foreign body-type multinucleated giant cells, containing 10-μm particles, in the sample collected just below the defect. Micro-Fourier transform infrared spectroscopy revealed that the foreign particles were cellulosic, presumably originating from cotton gauze fibers that had contaminated the interbody cages used during the initial surgery. Vertebral osteolytic defects that occur after interbody fusion are generally presumed to be the result of infection. This case suggests that some instances of vertebral osteolytic defects may be aseptically induced by foreign particles. Hence, this possibility should be carefully considered in such cases, to help prevent contamination of the morselized bone used for autologous grafts by foreign materials, such as gauze fibers.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
α-Cellulose, powder
Sigma-Aldrich
Sigmacell Cellulose, Type 101, Highly purified, fibers
Sigma-Aldrich
Sigmacell Cellulose, Type 20, 20 μm
Sigma-Aldrich
Sigmacell Cellulose, Type 50, 50 μm
Sigma-Aldrich
α-Cellulose, BioReagent, suitable for insect cell culture
Supelco
Avicel® PH-101, ~50 μm particle size
Sigma-Aldrich
Cellulose, fibers, (medium)
Sigma-Aldrich
Cellulose, microcrystalline, powder, 20 μm
Sigma-Aldrich
Cellulose, microcrystalline, powder
Supelco
Cellulose, powder, for column chromatography
Supelco
Cellulose, DS-0, powder, suitable for thin layer chromatography (TLC)
Supelco
Cellulose, acid washed, from spruce, for column chromatography
Supelco
Cellulose, acid washed, powder, for column chromatography
Supelco
Cellulose, DFS-0, microcrystalline, suitable for thin layer chromatography (TLC)
Sigma-Aldrich
Avicel® PH-101, tested according to Ph. Eur.
Sigma-Aldrich
Cellulose, colloidal, microcrystalline