Skip to Content
Merck

Spectroscopic investigations of fluoroquinolones metal ion complexes.

Acta poloniae pharmaceutica (2013-08-08)
Bartosz Urbaniak, Zenon J Kokot
ABSTRACT

The complex formation reaction, between fluoroquinolones (FQ): ciprofloxacin (CPX), enoxacin (ENX), enrofloxacin (ENRX), lomefloxacin (LOMX), levofloxacin (LEVX), ofloxacin (OFX), norfloxacin (NFX), sparfloxacin (SPRX) and aluminum(III), iron(III), copper(II) and zinc(II) ions were investigated. The spectrophotometic titration method in a wide range of pH was utilized for estimation of complex formation equilibrium. The application of Bjerrum method allowed to estimate the complex equilibrium of analyzed species in the reaction mixture. The overall stability constants (logbeta(pqr)) of fluoroquinolones complexes with metal ions were calculated using HYPRERQUAD program. The most stable complexes FQ were created with iron(III) and aluminum(III) and than copper(II) and zinc(II) ions, respectively. The highest values of calculated logbeta(pqr) were obtained for the Me(FQ)3H3 species and the lowest for the Me(FQ)2OH forms. Furthermore, an additional studies have been performed. The effect of the polyvalent metal ions on the complex structure has been investigated. The IR and 1H, 13C and 19F NMR spectroscopy methods were used for the confirmation of the structure of the FQ-Me complex formations. The most significant shifts of signals of 1H NMR spectra of the fluoroquinolones and their complexes were found for the protons substituted in the positions 2, 5 and 8, whereas the 13C NMR spectra showed up the shifts changes for carbon atoms in positions 2, 3, 3a and 4.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Copper, wire, diam. 0.64 mm, 99.995% trace metals basis
Sigma-Aldrich
Aluminum, evaporation slug, diam. × L 6.3 mm × 6.3 mm, 99.999% trace metals basis
Sigma-Aldrich
Aluminum, pellets, 3-8 mesh, ≥99.999% trace metals basis
Sigma-Aldrich
Aluminum, granular, <1 mm, 99.7% trace metals basis
Sigma-Aldrich
Zinc, nanopowder, 40-60 nm avg. part. size, ≥99% trace metals basis
Sigma-Aldrich
Zinc preparation, 5 g/dL Zn+2 in THF, highly reactive Rieke®metal
Sigma-Aldrich
Copper, wire, diam. 0.25 mm, 99.999% trace metals basis
Sigma-Aldrich
Copper, wire, diam. 2.0 mm, 99.999% trace metals basis
Sigma-Aldrich
Zinc, foil, thickness 1.0 mm, 99.99% trace metals basis
Sigma-Aldrich
Zinc, shot, 5 mm, 99.999% trace metals basis
Sigma-Aldrich
Zinc, foil, thickness 0.25 mm, 99.999% trace metals basis
Sigma-Aldrich
Iron, chips, 99.98% trace metals basis
Sigma-Aldrich
Iron, foil, thickness 0.1 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Aluminum, wire, diam. 1.0 mm, 99.999% trace metals basis
Sigma-Aldrich
Aluminum, wire, diam. 0.58 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Iron, powder, −325 mesh, 97%
Sigma-Aldrich
Copper, beads, 2-8 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Zinc, granular, 20-30 mesh, ACS reagent, ≥99.8%
Sigma-Aldrich
Copper, beads, 2-8 mm, 99.9995% trace metals basis
Continuous cast copper (O), BCR®, certified reference material, rod
Sigma-Aldrich
Copper, foil, ≥99.8% (complexometric)
Sigma-Aldrich
Copper, foil, thickness 0.5 mm, 99.98% trace metals basis
Sigma-Aldrich
Copper, wire, diam. 1.0 mm, ≥99.9%
Sigma-Aldrich
Copper, foil, thickness 0.025 mm, 99.98% trace metals basis
Iron, IRMM®, certified reference material, 0.5 mm wire
Aluminum, IRMM®, certified reference material, 1.0 mm foil
Sigma-Aldrich
Zinc, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.9%, granular
Aluminum, IRMM®, certified reference material, 1.0 mm wire
Sigma-Aldrich
Zinc, shot, <12 mm, 99.99% trace metals basis
Sigma-Aldrich
Zinc, sticks, diam. 7-10 mm, 99.97% trace metals basis