Skip to Content
Merck
  • Intranasal Delivery of lincRNA-Cox2 siRNA Loaded Extracellular Vesicles Decreases Lipopolysaccharide-Induced Microglial Proliferation in Mice.

Intranasal Delivery of lincRNA-Cox2 siRNA Loaded Extracellular Vesicles Decreases Lipopolysaccharide-Induced Microglial Proliferation in Mice.

Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology (2019-07-22)
Ke Liao, Fang Niu, Raghubendra Singh Dagur, Mengfan He, Changhai Tian, Guoku Hu
ABSTRACT

Long non-coding RNAs (lncRNAs), including long intergenic non-coding RNAs (lincRNAs), play an important regulatory role in controlling various biological processes. Both in vitro and in vivo studies have demonstrated that lincRNA-Cox2 plays a global regulatory role in regulating the expression of immune genes. Extracellular vesicles (EVs) are cell-derived nanosized membrane vesicles that have gained increasing attention in recent years due to their ability to efficiently deliver therapeutics to specific target organs or cell types. In this study, we found that lincRNA-Cox2 controls the expression of a set of cell cycle genes in lipopolysaccharide (LPS)-stimulated microglial cells. Our in vitro study suggested that knocking down lincRNA-Cox2 reversed LPS-induced microglial proliferation. In addition, our in vivo study demonstrated that intranasally delivered lincRNA-Cox2-siRNA loaded EVs could reach the brain resulting in a significant decrease in the expression of lincRNA-Cox2 in the microglia. Importantly, lincRNA-Cox2-siRNA loaded EVs also decreased LPS-induced microglial proliferation in mice. These findings indicate that intranasal delivery of EV-loaded small RNA could be developed as therapeutics for treatment of a multitude of CNS disorders.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human PTGS2