- Hepatitis B virus X protein impairs α-interferon signaling via up-regulation of suppressor of cytokine signaling 3 and protein phosphatase 2A.
Hepatitis B virus X protein impairs α-interferon signaling via up-regulation of suppressor of cytokine signaling 3 and protein phosphatase 2A.
Hepatitis B Virus (HBV) causes liver cirrhosis and hepatocellular carcinoma. Standard therapy includes treatment with interferon (IFN); however, its efficacy is limited. HBV has been reported to impair IFN signaling; however, the mechanism is unclear. Here, the relationship between HBV X protein (HBx) and IFN signaling was investigated by establishing HepG2 cells, stably expressing HBx (HepG2/HBx) via retrovirus-mediated gene transfer. Subsequently, IFN negative-regulator expression and its mechanism were studied. HepG2/HBx cells showed reduced expression of IFN-stimulated genes and expressed higher levels of suppressor of cytokine signaling 3 (SOCS3) and protein phosphatase 2A (PP2A) suppressor compared with control cells. Knockdown of SOCS3 and PP2A restored IFN sensitivity. Moreover, HepG2/HBx cells showed higher phosphorylation levels of signal transducers and activators of transcription 3 and endoplasmic reticulum stress, which are inducers of SOCS3 and PP2A, respectively. Additionally, HBx-knockdown restored IFN sensitivity in HepG2.2.15.7 cells. It was also confirmed that SOCS3 and PP2A expression levels were up-regulated in the liver of patients with HBV infection. The results of this study demonstrated that HBx impairs IFN signaling via increased expression of SOCS3 and PP2A, a novel mechanistic insight, providing a potential therapeutic target to enhance the efficiency of IFN therapy. J. Med. Virol. 89:267-275, 2017. © 2016 Wiley Periodicals, Inc.