Skip to Content
Merck
  • Gamma-diketone axonopathy: analyses of cytoskeletal motors and highways in CNS myelinated axons.

Gamma-diketone axonopathy: analyses of cytoskeletal motors and highways in CNS myelinated axons.

Toxicological sciences : an official journal of the Society of Toxicology (2010-06-18)
Lihai Zhang, Terrence Gavin, Anthony P DeCaprio, Richard M LoPachin
ABSTRACT

2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in cosedimentation assays using microtubules and NFs prepared from spinal cord of rats intoxicated at different daily dose rates (175 and 400 mg/kg/day). Results indicate that HD did not alter the presence of alpha- or beta-tubulins in these preparations, nor were changes noted in the distribution of either anterograde (KIF1A, KIF3, KIF5) or retrograde (dynein) molecular motors. The cosedimentation of dynactin, a dynein-associated protein, also was not affected. Immunoblot analysis of microtubule-associated proteins (MAPs) in microtubule preparations revealed substantial reductions (45-80%) in MAP1A, MAP1B heavy chain, MAP2, and tau regardless of HD dose rate. MAP1B light chain content was not altered. Finally, HD intoxication did not influence native NF protein content in either preparation. As per previous research, microtubule and NF preparations were enriched in high-molecular weight NF species. However, these NF derivatives were common to both HD and control samples, suggesting a lack of pathognomonic relevance. These data indicate that, although motor proteins were not affected, HD selectively impaired MAP-microtubule binding, presumably through adduction of lysine residues that mediate such interactions. Given their critical role in cytoskeletal physiology, MAPs could represent a relevant target for the induction of gamma-diketone axonopathy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-MAP1 Antibody, clone HM-1, ascites fluid, clone HM-1, Chemicon®
Sigma-Aldrich
Anti-Tubulin Antibody, beta, clone KMX-1, clone KMX-1, Chemicon®, from mouse
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Anti-Tau Antibody, a.a. 210-241, clone Tau-5, ascites fluid, clone Tau-5, Chemicon®
Sigma-Aldrich
Anti-MAP2A, 2B, 2C Antibody, clone HM-2, ascites fluid, clone HM-2, Chemicon®