Saltar al contenido
Merck

An mtDNA mutation accelerates liver aging by interfering with the ROS response and mitochondrial life cycle.

Free radical biology & medicine (2016-11-29)
Jan Niemann, Cindy Johne, Susanne Schröder, Franziska Koch, Saleh M Ibrahim, Julia Schultz, Markus Tiedge, Simone Baltrusch
RESUMEN

Mitochondrial dysfunction affects liver metabolism, but it remains unclear whether this interferes with normal liver aging. We investigated several mitochondrial pathways in hepatocytes and liver tissue from a conplastic mouse strain compared with the control C57BL/6NTac strain over 18 months of life. The C57BL/6NTac-mtNODLtJ mice differed from C57BL/6NTac mice by a point mutation in mitochondrial-encoded subunit 3 of cytochrome c oxidase. Young C57BL/6NTac-mtNODLtJ mice showed reduced mitochondrial metabolism but similar reactive oxygen species (ROS) production to C57BL/6NTac mice. Whereas ROS increased almost equally up to 9 months in both strains, different mitochondrial adaptation strategies resulted in decreasing ROS in advanced age in C57BL/6NTac mice, but persistent ROS production in C57BL/6NTac-mtNODLtJ mice. Only the conplastic strain developed elongated mitochondrial networks with artificial loop structures, depressed autophagy, high mitochondrial respiration and up-regulated antioxidative response. Our results indicate that mtDNA mutations accelerate liver ballooning degeneration and carry a serious risk of premature organ aging.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Tetramethylrhodamine ethyl ester perchlorate, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Phospho(enol)pyruvic acid tri(cyclohexylammonium) salt, ≥98% (enzymatic)