- Increased expression of oxidation-specific epitopes and apoptosis are associated with haptoglobin genotype: possible implications for plaque progression in human atherosclerosis.
Increased expression of oxidation-specific epitopes and apoptosis are associated with haptoglobin genotype: possible implications for plaque progression in human atherosclerosis.
The purpose of this study was to test the hypothesis that increased oxidative stress is associated with apoptosis in human plaques with the haptoglobin (Hp) 2-2 genotype. Intraplaque hemorrhage releases free hemoglobin (Hb). Impaired Hb clearance induces oxidative stress leading to plaque progression. The binding of Hp to Hb attenuates iron-induced oxidative reactions. Twenty-six human aortic plaques were Hp genotyped. Hp2-2 plaques (n = 13) were compared with control (Hp1-1/2-1) (n = 13). The iron grade was measured by Perl's staining. Immunostaining was used to detect oxidation-specific epitopes (OSEs) reflecting oxidized phospholipids and malondialdehyde-like epitopes. The percentages of apoptotic cells and apoptotic morphological features were quantified. DNA fragmentation and active caspase-3 were measured by in situ end-labeling and immunohistochemistry, respectively. In Hp2-2 plaques, iron content was increased (1.22 ± 0.15 vs. 0.54 ± 0.08; p < 0.0001) along with expression of oxidized phospholipid- (78.9 ± 5.8 vs. 38.8 ± 3.8; p < 0.0001), and malondialdehyde-like OSEs (93.9 ± 7.9 vs. 54.7 ± 3.9; p < 0.0001). The total percentages of apoptotic cells (11.9 ± 0.44 vs. 3.5 ± 0.28; p < 0.0001), nuclear fragmentation (11.8 ± 0.50 vs. 3.3 ± 0.26; p < 0.0001), nuclear condensation (10.9 ± 0.58 vs. 3.4 ± 0.20; p < 0.0001), chromatin margination (14.2 ± 0.57 vs. 6.5 ± 0.37; p < 0.0001), cytoplasmic blebs (1.6 ± 0.28 vs. 0.8 ± 0.14; p < 0.002), and eosinophilia (10.8 ± 0.74 vs. 4.2 ± 0.27; p < 0.0001) were increased in Hp2-2 plaques. Furthermore, DNA fragmentation (119.9 ± 1.40 vs. 57.5 ± 0.80; p < 0.001), and active caspase-3 density (84.7 ± 7.62 vs. 50.6 ± 7.49; p < 0.004) were increased in Hp2-2 plaques. Logistic regression analysis identified correlation between the percentage of apoptotic cells and the density of OSEs (r = 0.56; p < 0.003). These findings provide insights into genetic predisposition to oxidative stress and the relationship between OSEs and macrophage apoptosis that may explain advanced atherosclerosis in human Hp2-2 plaques.