Saltar al contenido
Merck

Technical and economic feasibility of polyester dyeing wastewater treatment by coagulation/flocculation and Fenton's oxidation.

Environmental technology (2014-04-08)
Carmen S D Rodrigues, Rui A R Boaventura, Luis M Madeira
RESUMEN

This study aims to investigate the efficiency of individual and integrated processes applied to organic matter abatement and biodegradability improvement of a polyester dyeing wastewater, namely coagulation/flocculation combined with Fenton's reagent (Approach 1), Fenton oxidation alone (Approach 2) and its integration with coagulation/flocculation (Approach 3). The effects of Fe2+ dose, initial concentration of the oxidant (H202) and temperature during Fenton's oxidation were evaluated in Approaches 1 and 2, whereas in Approach 3 the influence ofpH and flocculant dose was also assessed, during the coagulation/flocculation stage. Toxicity and biodegradability of the final effluent were also evaluated. After oxidation, a slight increase in the specific oxygen uptake rate of the effluent was observed (from 27.0 up to 28.5-30.0mg O2/(gVSSh)) and the inhibition to Vibrio fischeri was eliminated. An effluent that complies with discharge standards was obtained in all cases; however, Approach 3 revealed to be a promising solution for treating this effluent as it leads to smaller operating costs. Therefore, the use of dissolved iron resulting from Fenton's oxidation as coagulant in the second stage was shown to be an innovative, efficient and economically attractive strategy for treating these effluents.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Peróxido de hidrógeno solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Peróxido de hidrógeno solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Peróxido de hidrógeno solution, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Peróxido de hidrógeno solution, 30% (w/w), puriss. p.a., reag. ISO, reag. Ph. Eur.
Sigma-Aldrich
Iron, ≥99%, reduced, powder (fine)
Sigma-Aldrich
Peróxido de hidrógeno solution, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
Peróxido de hidrógeno solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Peróxido de hidrógeno solution, purum p.a., ≥35% (RT)
Sigma-Aldrich
Carbonyl iron, ≥97% Fe basis
Sigma-Aldrich
Iron, puriss. p.a., carbonyl-Iron powder, low in magnesium and manganese compounds, ≥99.5% (RT)
Sigma-Aldrich
Iron, powder, −325 mesh, 97%
Sigma-Aldrich
Iron, granular, 10-40 mesh, >99.99% trace metals basis
Sigma-Aldrich
Iron, powder, <10 μm, ≥99.9% trace metals basis
Millipore
Peróxido de hidrógeno solution, 3%, suitable for microbiology
Sigma-Aldrich
Peróxido de hidrógeno solution, SAJ first grade, ≥30.0%
Sigma-Aldrich
Iron, foil, thickness 0.1 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Iron, chips, 99.98% trace metals basis
Sigma-Aldrich
Iron, wire, diam. 1.0 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Peróxido de hidrógeno solution, 34.5-36.5%
Sigma-Aldrich
Peróxido de hidrógeno solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Supelco
Peróxido de hidrógeno solution, ≥30%, for trace analysis
Sigma-Aldrich
Iron, nanopowder, 35-45 nm particle size, 99.5% trace metals basis
Iron, foil, 100x100mm, thickness 0.25mm, hard, 99.5%
Supelco
Peróxido de hidrógeno solution, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Iron, foil, thickness 0.25 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Peróxido de hidrógeno solution, tested according to Ph. Eur.
Iron, foil, 300x300mm, thickness 0.1mm, hard, 99.5%
Iron, tube, 200mm, outside diameter 8.0mm, inside diameter 5mm, wall thickness 1.5mm, annealed, 99.5%
Iron, rod, 200mm, diameter 25mm, as drawn, 98+%
Iron, foil, 100x100mm, thickness 0.125mm, as rolled, 99.99+%