Saltar al contenido
Merck

High-temperature rate constant determination for the reaction of OH with iso-butanol.

The journal of physical chemistry. A (2012-04-21)
Genny A Pang, Ronald K Hanson, David M Golden, Craig T Bowman
RESUMEN

This work presents the first direct experimental study of the rate constant for the reaction of OH with iso-butanol (2-methyl-1-propanol) at temperatures from 907 to 1147 K at near-atmospheric pressures. OH time-histories were measured behind reflected shock waves using a narrow-linewidth laser absorption method during reactions of dilute mixtures of tert-butylhydroperoxide (as a fast source of OH) with iso-butanol in excess. The title reaction's overall rate constant (OH + iso-butanol →(k(overall)) all products) minus the rate constant for the β-radical-producing channel (OH + iso-butanol →(k(β)) 1-hydroxy-2-methyl-prop-2-yl radical + H(2)O) was determined from the pseudo-first-order rate of OH decay. A two-parameter Arrhenius fit of the experimentally determined rate constant in the current temperature range yields the expression (k(overall) - k(β)) = 1.84 × 10(-10) exp(-2350/T[K]) cm(3) molecule(-1) s(-1). A recommendation for the overall rate constant, including k(β), is made, and comparisons of the results to rate constant recommendations from the literature are discussed.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
2-Methyl-1-propanol, suitable for HPLC, 99.5%
Sigma-Aldrich
2-Methyl-1-propanol, ≥99%, FCC, FG
Sigma-Aldrich
2-Methyl-1-propanol, 99.5%
Sigma-Aldrich
2-Methyl-1-propanol, ACS reagent, ≥99.0%
Sigma-Aldrich
2-Methyl-1-propanol, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
2-Methyl-1-propanol, natural, ≥99%, FCC, FG
Sigma-Aldrich
2-Methyl-1-propanol, anhydrous, 99.5%
Sigma-Aldrich
2-Methyl-1-propanol, BioUltra, for molecular biology, ≥99.5% (GC)
Supelco
2-Methyl-1-propanol, analytical standard
Sigma-Aldrich
2-Methyl-1-propanol, JIS special grade, ≥99.0%
Sigma-Aldrich
2-Methyl-1-propanol, SAJ first grade, ≥99.0%