Saltar al contenido
Merck

Sox9 regulates alternative splicing and pancreatic beta cell function.

Nature communications (2024-01-19)
Sapna Puri, Hasna Maachi, Gopika Nair, Holger A Russ, Richard Chen, Pamela Pulimeno, Zachary Cutts, Vasilis Ntranos, Matthias Hebrok
RESUMEN

Despite significant research, mechanisms underlying the failure of islet beta cells that result in type 2 diabetes (T2D) are still under investigation. Here, we report that Sox9, a transcriptional regulator of pancreas development, also functions in mature beta cells. Our results show that Sox9-depleted rodent beta cells have defective insulin secretion, and aging animals develop glucose intolerance, mimicking the progressive degeneration observed in T2D. Using genome editing in human stem cells, we show that beta cells lacking SOX9 have stunted first-phase insulin secretion. In human and rodent cells, loss of Sox9 disrupts alternative splicing and triggers accumulation of non-functional isoforms of genes with key roles in beta cell function. Sox9 depletion reduces expression of protein-coding splice variants of the serine-rich splicing factor arginine SRSF5, a major splicing enhancer that regulates alternative splicing. Our data highlight the role of SOX9 as a regulator of alternative splicing in mature beta cell function.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Monoclonal Anti-Glucagon antibody produced in mouse, clone K79bB10, ascites fluid
Sigma-Aldrich
Anti-SOX9 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Monoclonal Anti-Insulin antibody produced in mouse, clone K36AC10, ascites fluid
Sigma-Aldrich
Anti-Y14 Antibody, clone 4C4, clone 4C4, from mouse