Saltar al contenido
Merck

Noise Exposures Causing Hearing Loss Generate Proteotoxic Stress and Activate the Proteostasis Network.

Cell reports (2020-11-26)
Nopporn Jongkamonwiwat, Miguel A Ramirez, Seby Edassery, Ann C Y Wong, Jintao Yu, Tirzah Abbott, Kwang Pak, Allen F Ryan, Jeffrey N Savas
RESUMEN

Exposure to excessive sound causes noise-induced hearing loss through complex mechanisms and represents a common and unmet neurological condition. We investigate how noise insults affect the cochlea with proteomics and functional assays. Quantitative proteomics reveals that exposure to loud noise causes proteotoxicity. We identify and confirm hundreds of proteins that accumulate, including cytoskeletal proteins, and several nodes of the proteostasis network. Transcriptomic analysis reveals that a subset of the genes encoding these proteins also increases acutely after noise exposure, including numerous proteasome subunits. Global cochlear protein ubiquitylation levels build up after exposure to excess noise, and we map numerous posttranslationally modified lysines residues. Several collagen proteins decrease in abundance, and Col9a1 specifically localizes to pillar cell heads. After two weeks of recovery, the cochlea selectively elevates the abundance of the protein synthesis machinery. We report that overstimulation of the auditory system drives a robust cochlear proteotoxic stress response.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Triton X-100, for molecular biology
Sigma-Aldrich
Casein Blocking Buffer 10x, for Northern and Southern blotting, solution
Sigma-Aldrich
Indole-3-acetic acid sodium salt, BioReagent, suitable for plant cell culture, ≥98%
Sigma-Aldrich
Anticuerpo anti-receptor 2 de glutamato, extracelular, clon 6C4, clone 6C4, Chemicon®, from mouse
Millipore
Inulin Discs, suitable for microbiology, Sterile filter paper discs impregnated with inulin