Saltar al contenido
Merck

Degradation of an appetitive olfactory memory via devaluation of sugar reward is mediated by 5-HT signaling in the honey bee.

Neurobiology of learning and memory (2020-07-12)
Yuan Lai, Elodie Despouy, Jean-Christophe Sandoz, Songkun Su, Maria Gabriela de Brito Sanchez, Martin Giurfa
RESUMEN

Conditioned taste aversion (CTA) learning induces the devaluation of a preferred food through its pairing with a stimulus inducing internal illness. In invertebrates, it is still unclear how this aversive learning impairs the memories of stimuli that had been associated with the appetitive food prior to its devaluation. Here we studied this phenomenon in the honey bee and characterized its neural underpinnings. We first trained bees to associate an odorant (conditioned stimulus, CS) with appetitive fructose solution (unconditioned stimulus, US) using a Pavlovian olfactory conditioning. We then subjected the bees that learned the association to a CTA training during which the antennal taste of fructose solution was contingent or not to the ingestion of quinine solution, which induces malaise a few hours after ingestion. Only the group experiencing contingent fructose stimulation and quinine-based malaise exhibited a decrease in responses to the fructose and a concomitant decrease in odor-specific retention in tests performed 23 h after the original odor conditioning. Furthermore, injection of dopamine- and serotonin-receptor antagonists after CTA learning revealed that this long-term decrease was mediated by serotonergic signaling as its blockade rescued both the responses to fructose and the odor-specific memory 23 h after conditioning. The impairment of a prior CS memory by subsequent CTA conditioning confirms that bees retrieve a devaluated US representation when presented with the CS. Our findings further highlight the importance of serotonergic signaling in aversive learning in the bee and uncover mechanisms underlying aversive memories induced by internal illness in invertebrates.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Methiothepin mesylate salt, ≥98% (HPLC), solid