Saltar al contenido
Merck

The metabolic response to an immune challenge in a viviparous snake, Sistrurus miliarius.

The Journal of experimental biology (2020-04-24)
Craig M Lind, Joseph Agugliaro, Terence M Farrell
RESUMEN

Mounting an immune response may be energetically costly and require the diversion of resources away from other physiological processes. Yet, both the metabolic cost of immune responses and the factors that impact investment priorities remain poorly described in many vertebrate groups. For example, although viviparity has evolved many times in vertebrates, the relationship between immune function and pregnancy has been disproportionately studied in placental mammals. To examine the energetic costs of immune activation and the modulation of immune function during pregnancy in a non-mammalian vertebrate, we elicited an immune response in pregnant and non-pregnant pygmy rattlesnakes, Sistrurus miliarius, using lipopolysaccharide (LPS). Resting metabolic rate (RMR) was measured using flow-through respirometry. Immune function was examined using bactericidal assays and leukocyte counts. The RMR of pygmy rattlesnakes increased significantly in response to LPS injection. There was no statistically significant difference in the metabolic response of non-reproductive and pregnant snakes to LPS. Mean metabolic increments for pregnant females, non-reproductive females, and males were 13%, 18% and 26%, respectively. The ratio of heterophils to lymphocytes was elevated in response to LPS across reproductive categories; however, LPS did not impact plasma bactericidal ability in non-reproductive snakes. Although pregnant females had significantly higher plasma bactericidal ability compared with non-reproductive snakes prior to manipulation, their bactericidal ability declined in response to LPS. LPS administration also significantly reduced several litter characteristics, particularly when administrated relatively early in pregnancy. Our results indicate that immune performance is energetically costly and is altered during pregnancy, and that immune activation during pregnancy may result in tradeoffs that affect offspring in a viviparous reptile.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Lipopolysaccharides from Escherichia coli O128:B12, purified by phenol extraction