Saltar al contenido
Merck

Pyrrolocin C and equisetin inhibit bacterial acetyl-CoA carboxylase.

PloS one (2020-05-30)
Erica C Larson, Albebson L Lim, Christopher D Pond, Matthew Craft, Mirela Čavužić, Grover L Waldrop, Eric W Schmidt, Louis R Barrows
RESUMEN

Antimicrobial resistance is a growing global health and economic concern. Current antimicrobial agents are becoming less effective against common bacterial infections. We previously identified pyrrolocins A and C, which showed activity against a variety of Gram-positive bacteria. Structurally similar compounds, known as pyrrolidinediones (e.g., TA-289, equisetin), also display antibacterial activity. However, the mechanism of action of these compounds against bacteria was undetermined. Here, we show that pyrrolocin C and equisetin inhibit bacterial acetyl-CoA carboxylase (ACC), the first step in fatty acid synthesis. We used transcriptomic data, metabolomic analysis, fatty acid rescue and acetate incorporation experiments to show that a major mechanism of action of the pyrrolidinediones is inhibition of fatty acid biosynthesis, identifying ACC as the probable molecular target. This hypothesis was further supported using purified proteins, demonstrating that biotin carboxylase is the inhibited component of ACC. There are few known antibiotics that target this pathway and, therefore, we believe that these compounds may provide the basis for alternatives to current antimicrobial therapy.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Millipore
Mueller Hinton Broth, suitable for microbiology, NutriSelect® Plus
Supelco
Silica gel 90 C18-Reversed phase, for column chromatography, fully endcapped