Saltar al contenido
Merck

LRRK2 maintains mitochondrial homeostasis and regulates innate immune responses to Mycobacterium tuberculosis.

eLife (2020-02-15)
Chi G Weindel, Samantha L Bell, Krystal J Vail, Kelsi O West, Kristin L Patrick, Robert O Watson
RESUMEN

The Parkinson's disease (PD)-associated gene leucine-rich repeat kinase 2 (LRRK2) has been studied extensively in the brain. However, several studies have established that mutations in LRRK2 confer susceptibility to mycobacterial infection, suggesting LRRK2 also controls immunity. We demonstrate that loss of LRRK2 in macrophages induces elevated basal levels of type I interferon (IFN) and interferon stimulated genes (ISGs) and causes blunted interferon responses to mycobacterial pathogens and cytosolic nucleic acid agonists. Altered innate immune gene expression in Lrrk2 knockout (KO) macrophages is driven by a combination of mitochondrial stresses, including oxidative stress from low levels of purine metabolites and DRP1-dependent mitochondrial fragmentation. Together, these defects promote mtDNA leakage into the cytosol and chronic cGAS engagement. While Lrrk2 KO mice can control Mycobacterium tuberculosis (Mtb) replication, they have exacerbated inflammation and lower ISG expression in the lungs. These results demonstrate previously unappreciated consequences of LRRK2-dependent mitochondrial defects in controlling innate immune outcomes.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Ácido úrico, ≥99%, crystalline
Sigma-Aldrich
Hypoxanthine, ≥99.0%
Sigma-Aldrich
Inosine, ≥99% (HPLC)
Sigma-Aldrich
Inosine 5′-monophosphate disodium salt hydrate, ≥99.0% (HPLC)
Sigma-Aldrich
Anti-Tom20/Tomm20 Antibody, clone 2F8.1, clone 2F8.1, from mouse
Sigma-Aldrich
Anti-TFAM Antibody, serum, from rabbit