Saltar al contenido
Merck

Pitx2c inhibition increases atrial fibroblast activity: Implications in atrial arrhythmogenesis.

European journal of clinical investigation (2019-08-06)
Yu-Hsun Kao, Cheng-Chih Chung, Wan-Li Cheng, Baigalmaa Lkhagva, Yi-Jen Chen
RESUMEN

A Pitx2c deficiency increases the risk of atrial fibrillation (AF). Atrial structural remodelling with fibrosis blocks electrical conduction and leads to arrhythmogenesis. A Pitx2c deficiency enhances profibrotic transforming growth factor (TGF)-β expression and calcium dysregulation, suggesting that Pitx2c may play a role in atrial fibrosis. The purposes of this study were to evaluate whether a Pitx2c deficiency modulates cardiac fibroblast activity and study the underlying mechanisms. A migration assay, proliferation analysis, Western blot analysis and calcium fluorescence imaging were conducted in Pitx2c-knockdown human atrial fibroblasts (HAFs) using short hairpin (sh)RNA or small interfering (si)RNA. Compared to control HAFs, Pitx2c-knockdown HAFs had a greater migration but a similar proliferative ability. Pitx2c-knockdown HAFs had a higher calcium influx with enhanced phosphorylation of calmodulin kinase II (CaMKII), α-smooth muscle actin and matrix metalloproteinase-2. In the presence of a CaMKII inhibitor (KN-93, 0.5 μmol/L), control and Pitx2c-knockdown HAFs exhibited similar migratory abilities. These findings suggest that downregulation of Pitx2c may regulate atrial fibrosis through modulating calcium homeostasis, which may contribute to its role in anti-atrial fibrosis, and Pitx2c downregulation may change the atrial electrophysiology and AF occurrence through modulating fibroblast activity.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
MISSION® esiRNA, targeting human PITX2