Skip to Content
Merck
  • Inhibition of osteoblast mineralization by phosphorylated phage-derived apatite-specific peptide.

Inhibition of osteoblast mineralization by phosphorylated phage-derived apatite-specific peptide.

Biomaterials (2015-09-26)
Janani Ramaswamy, Hwa Kyung Nam, Harsha Ramaraju, Nan E Hatch, David H Kohn
ABSTRACT

Functionalization of biomaterials with material- and cell-specific peptide sequences allows for better control of their surface properties and communication with the surrounding environment. Using a combinatorial phage display approach, we previously identified the peptide VTKHLNQISQSY (VTK) with specific affinity to biomimetic apatite. Phosphorylation of the serine residues of the peptide (pVTK) caused a significant increase in binding to apatite, as well as a dose-dependent inhibition of osteoblast mineralization. In this study, we investigated the mechanisms behind pVTK mediated inhibition of mineralization using MC3T3 cells and testing the hypothesis that mineralization is inhibited via alteration of the Enpp1-TNAP-Ank axis. Inhibition of mineralization was not due to disruption of collagen deposition or calcium chelation by the negatively charged pVTK. The timing of peptide administration was important in inhibiting mineralization - pVTK had a greater effect at later stages of osteogenic differentiation (days 7-12 of culture corresponding to matrix maturation and mineralization), and could prevent progression of mineralization once it had started. pVTK treatment resulted in a significant decrease in ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) enzyme activity and gene expression. The expression of ankylosis protein (Ank), osteopontin (OPN) and Pit-1 genes was also significantly reduced with peptide treatment, while tissue non-specific alkaline phosphatase (TNAP), bone sialoprotein (BSP), and Runx2 gene expression was significantly higher. The ability of pVTK to inhibit mineralization can potentially be translated into therapeutics against pathological calcification seen in cardiovascular disease, osteoarthritis or craniosynostosis, or be used to prevent failure of biomaterials due to calcification, such as bioprosthetic heart valves.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Thymidine, ≥99.0% (HPLC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Anti-Goat IgG (whole molecule)–Peroxidase antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Thymidine, ≥99%
Sigma-Aldrich
Thymidine, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Anti-Rabbit IgG (whole molecule)–Peroxidase antibody produced in goat, affinity isolated antibody
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium dodecyl sulfate, SAJ special grade, ≥97.0%
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Acetic acid, ≥99.7%, suitable for amino acid analysis
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Acetic acid, 99.5-100.0%
Sigma-Aldrich
Acetic acid solution, 1 M, 1 N
Sigma-Aldrich
Acetic acid, JIS special grade, ≥99.7%
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetic acid solution, suitable for HPLC