Skip to Content
Merck
  • Loss of TLE3 promotes the mitochondrial program in beige adipocytes and improves glucose metabolism.

Loss of TLE3 promotes the mitochondrial program in beige adipocytes and improves glucose metabolism.

Genes & development (2019-05-28)
Stephanie Pearson, Anne Loft, Prashant Rajbhandari, Judith Simcox, Sanghoon Lee, Peter Tontonoz, Susanne Mandrup, Claudio J Villanueva
ABSTRACT

Prolonged cold exposure stimulates the recruitment of beige adipocytes within white adipose tissue. Beige adipocytes depend on mitochondrial oxidative phosphorylation to drive thermogenesis. The transcriptional mechanisms that promote remodeling in adipose tissue during the cold are not well understood. Here we demonstrate that the transcriptional coregulator transducin-like enhancer of split 3 (TLE3) inhibits mitochondrial gene expression in beige adipocytes. Conditional deletion of TLE3 in adipocytes promotes mitochondrial oxidative metabolism and increases energy expenditure, thereby improving glucose control. Using chromatin immunoprecipitation and deep sequencing, we found that TLE3 occupies distal enhancers in proximity to nuclear-encoded mitochondrial genes and that many of these binding sites are also enriched for early B-cell factor (EBF) transcription factors. TLE3 interacts with EBF2 and blocks its ability to promote the thermogenic transcriptional program. Collectively, these studies demonstrate that TLE3 regulates thermogenic gene expression in beige adipocytes through inhibition of EBF2 transcriptional activity. Inhibition of TLE3 may provide a novel therapeutic approach for obesity and diabetes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Oil Red O, certified by the Biological Stain Commission
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)