跳转至内容
Merck
  • Transcriptomic profiling reveals disordered regulation of surfactant homeostasis in neonatal cloned bovines with collapsed lungs and respiratory distress.

Transcriptomic profiling reveals disordered regulation of surfactant homeostasis in neonatal cloned bovines with collapsed lungs and respiratory distress.

Molecular reproduction and development (2017-05-18)
Yan Liu, Yifan Rao, Xiaojing Jiang, Fanyi Zhang, Linhua Huang, Weihua Du, Haisheng Hao, Xueming Zhao, Dong Wang, Qiuling Jiang, Huabin Zhu, Xiuzhu Sun
摘要

Respiratory distress is a major cause of mortality in cloned neonatal animals, but its pathogenesis remains poorly understood. Here, we used necropsy and histology procedures to evaluate the lungs of cloned neonatal bovines dying of respiratory distress, finding incomplete lung dilation, alveolar collapse, and thickened alveolar walls. Comparison of the transcriptomes between collapsed lungs of cloned bovines and their normal counterparts revealed 1373 differentially expressed genes in collapsed lungs (p < 0.05, fold change >1.5 or <1.5-1 ), many of which were associated with surfactant biosynthesis, secretion, transport, recycling, and degradation. ERK/MAPK and Notch signaling pathways were among the canonical pathways relevant to surfactant homeostasis. Expression of the genes encoding Surfactant protein B (SPB) and Surfactant protein C (SPC)-which control surfactant lipid packing, spreading, and stability-were significantly lower in collapsed lungs of cloned neonates at the transcript (p < 0.01) and protein levels (p < 0.05) relative to that in normal lungs. Thus, our results provide an initial view into the changes in gene expression in cloned newborns with lung collapse and respiratory distress, and present a valuable resource for developing novel preventive or therapeutic strategies to reduce the mortality rate of cloned animals and to improve the efficiency of somatic cell nuclear transfer technology.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗表面活性剂蛋白B抗体, serum, Upstate®