跳转至内容
Merck

901034

Sigma-Aldrich

聚乙烯醇(PVA)混合打印耗材

1.75 mm

别名:

AtlasSupport, PVA混纺丝

登录查看公司和协议定价


About This Item

CAS号:
分類程式碼代碼:
12352104
NACRES:
NA.23

品質等級

描述

Filament roundness: ≥95%
Melt flow rate: 2.3 g/10 min
Melt temperature: ±163 °C
Print temperature: ±180-205 °C
Specific gravity: 1.22 g/cc
Spool Hub Diameter: 52 mm
Spool Size (DxH): 200 mmx55 mm
Vicat softening temperature: ± 60.2 °C

形狀

solid (filament)

顏色

orange, natural

直徑

1.75 mm±0.05 mm (filament diameter)

InChI

1S/C2H4O/c1-2-3/h2-3H,1H2

InChI 密鑰

IMROMDMJAWUWLK-UHFFFAOYSA-N

正在寻找类似产品? 访问 产品对比指南

相关类别

一般說明

聚乙烯醇(PVA)混合打印长丝是用于复杂结构的多挤压3D打印的水溶性支撑材料。该材料是不同等级PVA的混合物,可改善聚乙烯醇的热稳定性和可印刷性。除了这些改进之外,这种共混物对湿气降解的敏感性较低,同时又保持其水溶性。这种浅橙色、无味且高质量的长丝可在180至205°C的温度下挤出,适用于所有基于RepRap技术的台式3D打印机,例如MakerBot、Ultimaker、RepRap(Mendel、Huxley、Prusa)、UP、Solidoodle、Leapfrog等。这种PVA混合长丝对多种材料(如PLA、ABS、PETG、ASA、HIPS和尼龙)具有良好的黏附性,并且在水中可生物降解,不会产生有害的副产物。尽管PVA可溶于冷水,但使用连续加热的温水浴可以加速溶解过程。在不使用时,应将长丝储存于室温下干燥处,如密封在塑料袋中或装有干燥剂的密闭容器中。关于推荐的初始打印机设置,参阅“常规打印设置”文件。

應用

AtlasSupport是Formfutura VOF公司的商标
由于其水溶性和生物相容性,聚乙烯醇(PVA)长丝最常被用作形成具有独特和复杂结构的组织工程构造的牺牲材料。利用这种材料,可以打印具有大凸头、深内腔和/或复​​杂几何形状的支架。除了用作牺牲材料外,PVA长丝还被用于打印新型口服药物递送装置和片剂。

法律資訊

AtlasSupport is a trademark of Formfutura VOF

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 1

閃點(°F)

49.5 °F - closed cup

閃點(°C)

9.7 °C - closed cup


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

其他客户在看

Alice Melocchi et al.
International journal of pharmaceutics, 509(1-2), 255-263 (2016-05-25)
Fused deposition modeling (FDM) is a 3D printing technique based on the deposition of successive layers of thermoplastic materials following their softening/melting. Such a technique holds huge potential for the manufacturing of pharmaceutical products and is currently under extensive investigation.
R Hernández-Córdova et al.
Journal of biomedical materials research. Part A, 104(8), 1912-1921 (2016-03-19)
Biomaterial scaffolds are a key part of cardiac tissue engineering therapies. The group has recently synthesized a novel polycaprolactone based polyurethane-urea copolymer that showed improved mechanical properties compared with its previously published counterparts. The aim of this study was to
Tatsuaki Tagami et al.
Biological & pharmaceutical bulletin, 40(3), 357-364 (2017-03-03)
Three-dimensional (3D) printers have been applied in many fields, including engineering and the medical sciences. In the pharmaceutical field, approval of the first 3D-printed tablet by the U.S. Food and Drug Administration in 2015 has attracted interest in the manufacture
Shuai Li et al.
ACS applied materials & interfaces, 8(38), 25096-25103 (2016-09-09)
Despite considerable advances in tissue engineering over the past two decades, solutions to some crucial problems remain elusive. Vascularization is one of the most important factors that greatly influence the function of scaffolds. Many research studies have focused on the
Soumyaranjan Mohanty et al.
Materials science & engineering. C, Materials for biological applications, 55, 569-578 (2015-06-29)
One of the major challenges in producing large scale engineered tissue is the lack of ability to create large highly perfused scaffolds in which cells can grow at a high cell density and viability. Here, we explore 3D printed polyvinyl

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门