跳转至内容
Merck
所有图片(1)

Key Documents

900416

Sigma-Aldrich

Nitrogen-doped graphene

别名:

N-Doped graphene, NDG, NG

登录查看公司和协议定价


About This Item

分類程式碼代碼:
12352200

形狀

powder

成份

Carbon, >80 wt. %
Nitrogen, >4 wt. %

顏色

black

正在寻找类似产品? 访问 产品对比指南

一般說明

This highly exfoliated nitrogen-doped graphene exhibits high electrochemical activity towards oxygen reduction in alkali medium providing an affordable industrial alternative to currently used noble metal-based catalysts (i.e. Pt, Pd). This nitrogen-doped graphene shows high onset potential (ca. 940 mV vs. RHE) carrying out the electrochemical oxygen reduction reaction (ORR) towards a 4 electron pathway avoiding the production of H2O2. Furthermore, this material is reported to be more stable (to MeOH) and durable (CO tolerance) than Pt-based catalysts.This highly exfoliated nitrogen-doped graphene exhibits high electrochemical activity towards oxygen reduction in alkali medium providing an affordable industrial alternative to currently used noble metal-based catalysts (i.e. Pt, Pd). This nitrogen-doped graphene shows high onset potential (ca. 940 mV vs. RHE) carrying out the electrochemical oxygen reduction reaction (ORR) towards a 4 electron pathway avoiding the production of H2O2. Furthermore, this material is reported to be more stable (to MeOH) and durable (CO tolerance) than Pt-based catalysts.

物理性質

Electrocatalytic oxygen reduction reaction (ORR) onset potential: >-0.1 V (0.1 M KOH vs Ag/AgCl).

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Facile synthesis of mesoporous nitrogen-dopedgraphene: An efficient methanol?tolerantcathodiccatalystfor oxygen reductionreaction.
Conga H, et al.
Nano Energy, 3, 55-63 (2014)
Frédéric Joucken et al.
Scientific reports, 5, 14564-14564 (2015-09-29)
Understanding the modification of the graphene's electronic structure upon doping is crucial for enlarging its potential applications. We present a study of nitrogen-doped graphene samples on SiC(000) combining angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy and X-ray photoelectron spectroscopy
Tao Hu et al.
Physical chemistry chemical physics : PCCP, 16(3), 1060-1066 (2013-11-30)
Chemical doping of nitrogen into graphene can significantly enhance the reversible capacity and cyclic stability of the graphene-based lithium ion battery (LIB) anodes, and first principles calculations based on density functional theory suggested that pyridinic-N shows stronger binding with Li

商品

Advanced technologies for energy conversion and storage aim to improve performance and reduce environmental impact.

Advances in scalable synthesis and processing of two-dimensional materials

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门