Skip to Content
Merck
  • Leptin differentially regulates endochondral ossification in tibial and vertebral epiphyseal plates.

Leptin differentially regulates endochondral ossification in tibial and vertebral epiphyseal plates.

Cell biology international (2017-10-06)
Xiaomiao Li, Sheng Shi, Jianwei Chen, Guibin Zhong, Xinfeng Li, Zude Liu
ABSTRACT

Longitudinal bone growth is governed by a complex network of endocrine signals including leptin. In mouse, leptin deficiency leads to distinct phenotypes in bones of the limb and spine, suggesting the appendicular and axial skeletons are subject to differential regulation by leptin. We established primary cultures for the chondrocytes from tibial and vertebral epiphyseal plates. Cellular proliferation and apoptosis were analyzed for the chondrocytes that had been treated with various concentrations of leptin. Crucial factors for chondrocyte proliferation and differentiation, such as BMP7 and Wnt3, were measured in the cells treated with leptin alone or in combination with pharmacological inhibitors of STAT and ERK signaling pathways. Primary culture of tibial epiphyseal plate chondrocytes has greater proliferating capability compared with that of vertebral epiphyseal plate chondrocytes. Leptin could promote the proliferation of tibial epiphyseal plate chondrocytes, while its effect on vertebral epiphyseal plate chondrocytes was inhibitory. Consistently, apoptosis is inhibited in tibial but promoted in vertebral epiphyseal plate chondrocytes by leptin. Importantly, leptin differentially modulates chondrogenic signaling pathways in tibial and vertebral epiphyseal chondrocytes through STAT and ERK pathways. Leptin differentially regulates chondrogenic proliferation and differentiation in appendicular and axial regions of the skeletons. The signaling pathways in these two regions are also distinct and subject to differential regulation by leptin through the STAT pathway in tibial epiphyseal plate chondrocytes but through the ERK pathway in vertebral epiphyseal plate chondrocytes. Therefore, the regulation of leptin is multi-faceted in the distinct anatomical regions of the skeleton. Knowledge gained from this system will provide insights into the pathophysiological causes for the diseases related to bone development and metabolism.