Skip to Content
Merck
  • Dopamine exacerbates mutant Huntingtin toxicity via oxidative-mediated inhibition of autophagy in SH-SY5Y neuroblastoma cells: Beneficial effects of anti-oxidant therapeutics.

Dopamine exacerbates mutant Huntingtin toxicity via oxidative-mediated inhibition of autophagy in SH-SY5Y neuroblastoma cells: Beneficial effects of anti-oxidant therapeutics.

Neurochemistry international (2016-11-15)
Chiara Vidoni, Andrea Castiglioni, Christian Seca, Eleonora Secomandi, Mariarosa A B Melone, Ciro Isidoro
ABSTRACT

Neuronal cell death in Huntington's Disease (HD) is associated with the abnormal expansions of a polyglutamine (polyQ) tract in the huntingtin protein (Htt) at the N-terminus that causes the misfolding and aggregation of the mutated protein (mHtt). Autophagy-lysosomal degradation of Htt aggregates may protect the neurons in HD. HD patients eventually manifest parkinsonian-like symptoms, which underlie defects in the dopaminergic system. We hypothesized that dopamine (DA) exacerbates the toxicity in affected neurons by over-inducing an oxidative stress that negatively impinges on the autophagy clearance of mHtt and thus precipitating neuronal cell death. Here we show that the hyper-expression of mutant (>113/150) polyQ Htt is per se toxic to dopaminergic human neuroblastoma SH-SY5Y cells, and that DA exacerbates this toxicity leading to apoptosis and secondary necrosis. DA toxicity is mediated by ROS production (mainly anion superoxide) that elicits a block in the formation of autophagosomes. We found that the pre-incubation with N-Acetyl-l-Cysteine (a quinone reductase inducer) or Deferoxamine (an iron chelator) prevents the generation of ROS, restores the autophagy degradation of mHtt and preserves the cell viability in SH-SY5Y cells expressing the polyQ Htt and exposed to DA. The present findings suggest that DA-induced impairment of autophagy underlies the parkinsonism in HD patients. Our data provide a mechanistic explanation of the DA toxicity in dopaminergic neurons expressing the mHtt and support the use of anti-oxidative stress therapeutics to restore protective autophagy in order to slow down the neurodegeneration in HD patients.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-LC3B antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Amyloid Protein Non-Aβ Component, ≥80% (HPLC)
Sigma-Aldrich
Dopamine hydrochloride
Sigma-Aldrich
L-Glutamine solution, 200 mM, solution, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Penicillin-Streptomycin, with 10,000 units penicillin and 10 mg streptomycin per mL in 0.9% NaCl, 0.1 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Anti-Polyglutamine-Expansion Diseases Marker Antibody, clone 5TF1-1C2, ascites fluid, clone 5TF1-1C2, Chemicon®
Sigma-Aldrich
Anti-MKI67 antibody produced in rabbit, Ab2, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-β-Tubulin antibody, Mouse monoclonal, clone TUB 2.1, purified from hybridoma cell culture
Sigma-Aldrich
Minimum Essential Medium Eagle, With Earle′s salts and sodium bicarbonate, without L-glutamine, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Nutrient Mixture F-12 Ham, With sodium bicarbonate, without L-glutamine, liquid, sterile-filtered, suitable for cell culture
Supelco
Bradford Reagent, for 0.1-1.4 mg/ml protein
Sigma-Aldrich
Anti-Huntingtin Protein Antibody, a.a. 181-810, clone 1HU-4C8, ascites fluid, clone 1HU-4C8, Chemicon®