Skip to Content
Merck
  • An Extracellular Tetrathionate Hydrolase from the Thermoacidophilic Archaeon Acidianus Ambivalens with an Activity Optimum at pH 1.

An Extracellular Tetrathionate Hydrolase from the Thermoacidophilic Archaeon Acidianus Ambivalens with an Activity Optimum at pH 1.

Frontiers in microbiology (2011-07-13)
Jonas Protze, Fabian Müller, Karin Lauber, Bastian Naß, Reinhard Mentele, Friedrich Lottspeich, Arnulf Kletzin
ABSTRACT

The thermoacidophilic and chemolithotrophic archaeon Acidianus ambivalens is routinely grown with sulfur and CO(2)-enriched air. We had described a membrane-bound, tetrathionate (TT) forming thiosulfate:quinone oxidoreductase. Here we describe the first TT hydrolase (TTH) from Archaea. A. ambivalens cells grown aerobically with TT as sole sulfur source showed doubling times of 9 h and final cell densities of up to 8 × 10(8)/ml. TTH activity (≈0.28 U/mg protein) was found in cell-free extracts of TT-grown but not of sulfur-grown cells. Differential fractionation of freshly harvested cells involving a pH shock showed that about 92% of the TTH activity was located in the pseudo-periplasmic fraction associated with the surface layer, while 7.3% and 0.3% were present in the soluble and membrane fractions, respectively. The enzyme was enriched 54-fold from the cytoplasmic fraction and 2.1-fold from the pseudo-periplasmic fraction. The molecular mass of the single subunit was 54 kDa. The optimal activity was at or above 95°C at pH 1. Neither PQQ nor divalent cations had a significant effect on activity. The gene (tth1) was identified following N-terminal sequencing of the protein. Northern hybridization showed that tth1 was transcribed in TT-grown cells in contrast to a second paralogous tth2 gene. The deduced amino acid sequences showed similarity to the TTH from Acidithiobacillus and other proteins from the PQQ dehydrogenase superfamily. It displayed a β-propeller structure when being modeled, however, important residues from the PQQ-binding site were absent. The soluble, extracellular, and acidophilic TTH identified in TT-grown A. ambivalens cells is essential for TT metabolism during growth but not for the downstream processing of the TQO reaction products in S°-grown cells. The liberation of TTH by pH shock from otherwise intact cells strongly supports the pseudo-periplasm hypothesis of the S-layer of Archaea.

MATERIALS
Product Number
Brand
Product Description

Roche
DIG Luminescent Detection Kit, sufficient for 50 blots (10 cm x 10 cm each), kit of 1 (5 components), suitable for hybridization
Sigma-Aldrich
Methoxatin disodium salt, ≥97.0% (HPLC)
Roche
DIG DNA Labeling Kit, sufficient for 40 labeling reactions, kit of 1 (7 components), suitable for hybridization