Skip to Content
Merck
  • Activin signaling disruption in the cochlea does not influence hearing in adult mice.

Activin signaling disruption in the cochlea does not influence hearing in adult mice.

Audiology & neuro-otology (2014-11-28)
Lukas Horvath, Daniel Bodmer, Vesna Radojevic, Arianne Monge Naldi
ABSTRACT

Activin, a member of the TGF-F superfamily, was found to play an important role in the development, repair and apoptosis of different tissues and organs. Accordingly, activin signaling is involved in the development of the cochlea. Activin binds to its receptor ActRII, then dimerizes with ActRI and induces a signaling pathway resulting in gene expression. A study reported a case of fibrodysplasia ossificans progressiva with an unusual mutation in the ActRI gene leading to sensorineural hearing loss. This draws attention to the role of activin and its receptors in the developed cochlea. To date, only the expression of ActRII is known in the adult mammalian cochlea. In this study, we present for the first time the presence of activin A and ActRIB in the adult cochlea. Transgenic mice with postnatal dominant-negative ActRIB expression causing disruption of activin signaling in vivo were used for assessing cochlear morphology and hearing ability through the auditory brainstem response (ABR) threshold. Nonfunctioning ActRIB did not affect the ABR thresholds and did not alter the microscopic anatomy of the cochlea. We conclude, therefore, that activin signaling is not necessary for hearing in adult mice under physiological conditions but may be important during and after damaging events in the inner ear.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Eosin Y, 75% (HPLC)
Sigma-Aldrich
Eosin Y solution, 5 wt. % in H2O
Sigma-Aldrich
Hydrochloric acid solution, 0.5 M
Sigma-Aldrich
Hydrochloric acid solution, 0.05 M
Sigma-Aldrich
Hydrochloric acid solution, 1 M
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Hydrochloric acid, JIS special grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.2 M
Sigma-Aldrich
Hydrogen chloride – ethanol solution, 0.1 M in ethanol
Sigma-Aldrich
Hydrochloric acid solution, 2 M
Sigma-Aldrich
Eosin Y, SAJ special grade, ≥85.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.01 M
Sigma-Aldrich
Hydrochloric acid, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Hydrochloric acid solution, 6 M
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), for GC derivatization, LiChropur
SAFC
HEPES
Sigma-Aldrich
Eosin Y, Dye content ~99 %
Sigma-Aldrich
Eosin Y disodium salt, Dye content ≥85 %
Sigma-Aldrich
Eosin Y disodium salt, certified by the Biological Stain Commission
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hematoxylin solution according to Mayer
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur