Skip to Content
Merck
  • Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation.

Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation.

The Journal of clinical investigation (2014-01-03)
Yoshihiko Ichikawa, Mohsen Ghanefar, Marina Bayeva, Rongxue Wu, Arineh Khechaduri, Sathyamangla V Naga Prasad, R Kannan Mutharasan, Tejaswitha Jairaj Naik, Hossein Ardehali
ABSTRACT

Doxorubicin is an effective anticancer drug with known cardiotoxic side effects. It has been hypothesized that doxorubicin-dependent cardiotoxicity occurs through ROS production and possibly cellular iron accumulation. Here, we found that cardiotoxicity develops through the preferential accumulation of iron inside the mitochondria following doxorubicin treatment. In isolated cardiomyocytes, doxorubicin became concentrated in the mitochondria and increased both mitochondrial iron and cellular ROS levels. Overexpression of ABCB8, a mitochondrial protein that facilitates iron export, in vitro and in the hearts of transgenic mice decreased mitochondrial iron and cellular ROS and protected against doxorubicin-induced cardiomyopathy. Dexrazoxane, a drug that attenuates doxorubicin-induced cardiotoxicity, decreased mitochondrial iron levels and reversed doxorubicin-induced cardiac damage. Finally, hearts from patients with doxorubicin-induced cardiomyopathy had markedly higher mitochondrial iron levels than hearts from patients with other types of cardiomyopathies or normal cardiac function. These results suggest that the cardiotoxic effects of doxorubicin develop from mitochondrial iron accumulation and that reducing mitochondrial iron levels protects against doxorubicin-induced cardiomyopathy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Topoisomerase II α human, (Single band on SDS-PAGE), liquid
Sigma-Aldrich
DNA Gyrase from Escherichia coli, aqueous glycerol solution