Skip to Content
Merck
  • Visible light CrO4(2-) reduction using the new CuAlO2/CdS hetero-system.

Visible light CrO4(2-) reduction using the new CuAlO2/CdS hetero-system.

Journal of hazardous materials (2012-04-17)
R Brahimi, Y Bessekhouad, N Nasrallah, M Trari
ABSTRACT

In this study, 64% of hexavalent chromium Cr(VI) reduction from the initial concentration (10(-4) M) is reported under visible light using the (CuAlO(2)/CdS) hetero-system. In this new hetero-system, low doped CuAlO(2) delafossite, synthesized by sol-gel works as an electrons reservoir with a wide space charge region (440 nm). In this case, the electron transfer to chromate is mediated via the hexagonal CdS variety, whose conduction band level is at -1.08 V with respect to the saturated calomel electrode which is more negative than the CrO(4)(2-)/Cr(3+) level. This high reduction rate is achieved under optimized pH and CuAlO(2) percentage. Moreover, salicylic acid gives the best performance among hole scavengers and CuAlO(2) approaches 100% photostability at pH 7.5. The photo-catalytic process follows a pseudo first order kinetic with a half life of 2h. The reaction products are identified by UV-visible spectrophotometry and linear voltametry at a platinum rotating electrode. The results reveal the presence of Cr(3+) after irradiation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Chromium(III) oxide, SAJ first grade, ≥99.0%
Sigma-Aldrich
Chromium(III) oxide, nanopowder, <100 nm particle size (TEM), 98% trace metals basis
Sigma-Aldrich
Chromium(III) oxide, powder, 99.9% trace metals basis
Sigma-Aldrich
Chromium(III) oxide, powder, ≥98%