Skip to Content
Merck
  • Apoptolidin family glycomacrolides target leukemia through inhibition of ATP synthase.

Apoptolidin family glycomacrolides target leukemia through inhibition of ATP synthase.

Nature chemical biology (2021-12-04)
Benjamin J Reisman, Hui Guo, Haley E Ramsey, Madison T Wright, Bradley I Reinfeld, P Brent Ferrell, Gary A Sulikowski, W Kimryn Rathmell, Michael R Savona, Lars Plate, John L Rubinstein, Brian O Bachmann
ABSTRACT

Cancer cells have long been recognized to exhibit unique bioenergetic requirements. The apoptolidin family of glycomacrolides are distinguished by their selective cytotoxicity towards oncogene-transformed cells, yet their molecular mechanism remains uncertain. We used photoaffinity analogs of the apoptolidins to identify the F1 subcomplex of mitochondrial ATP synthase as the target of apoptolidin A. Cryogenic electron microscopy (cryo-EM) of apoptolidin and ammocidin-ATP synthase complexes revealed a novel shared mode of inhibition that was confirmed by deep mutational scanning of the binding interface to reveal resistance mutations which were confirmed using CRISPR-Cas9. Ammocidin A was found to suppress leukemia progression in vivo at doses that were tolerated with minimal toxicity. The combination of cellular, structural, mutagenesis, and in vivo evidence defines the mechanism of action of apoptolidin family glycomacrolides and establishes a path to address oxidative phosphorylation-dependent cancers.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hexokinase from Saccharomyces cerevisiae, Type F-300, lyophilized powder, ≥130 units/mg protein (biuret)
Sigma-Aldrich
Glucose-6-phosphate Dehydrogenase from Leuconostoc mesenteroides, recombinant, expressed in E. coli, lyophilized powder, ≥550 units/mg protein (biuret)
Sigma-Aldrich
Pyruvate Kinase/Lactic Dehydrogenase enzymes from rabbit muscle, For the Determination of ADP, buffered aqueous glycerol solution