Skip to Content
Merck
  • Synergy between Readthrough and Nonsense Mediated Decay Inhibition in a Murine Model of Cystic Fibrosis Nonsense Mutations.

Synergy between Readthrough and Nonsense Mediated Decay Inhibition in a Murine Model of Cystic Fibrosis Nonsense Mutations.

International journal of molecular sciences (2021-01-06)
Daniel R McHugh, Calvin U Cotton, Craig A Hodges
ABSTRACT

Many heritable genetic disorders arise from nonsense mutations, which generate premature termination codons (PTCs) in transcribed mRNA. PTCs ablate protein synthesis by prematurely terminating the translation of mutant mRNA, as well as reducing mutant mRNA quantity through targeted degradation by nonsense-mediated decay (NMD) mechanisms. Therapeutic strategies for nonsense mutations include facilitating ribosomal readthrough of the PTC and/or inhibiting NMD to restore protein function. However, the efficacy of combining readthrough agents and NMD inhibitors has not been thoroughly explored. In this study, we examined combinations of known NMD inhibitors and readthrough agents using functional analysis of the CFTR protein in primary cells from a mouse model carrying a G542X nonsense mutation in Cftr. We observed synergy between an inhibitor of the NMD component SMG-1 (SMG1i) and the readthrough agents G418, gentamicin, and paromomycin, but did not observe synergy with readthrough caused by amikacin, tobramycin, PTC124, escin, or amlexanox. These results indicate that treatment with NMD inhibitors can increase the quantity of functional protein following readthrough, and that combining NMD inhibitors and readthrough agents represents a potential therapeutic option for treating nonsense mutations.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Escin, ≥95%, powder
Sigma-Aldrich
Adenosine 3′,5′-cyclic monophosphate tris salt, ≥97% (HPLC), powder
Sigma-Aldrich
Forskolin, from Coleus forskohlii, ≥98% (HPLC), powder
Sigma-Aldrich
SMG1i, ≥95% (HPLC)