Skip to Content
Merck
  • BET Bromodomain Proteins Function as Master Transcription Elongation Factors Independent of CDK9 Recruitment.

BET Bromodomain Proteins Function as Master Transcription Elongation Factors Independent of CDK9 Recruitment.

Molecular cell (2017-07-05)
Georg E Winter, Andreas Mayer, Dennis L Buckley, Michael A Erb, Justine E Roderick, Sarah Vittori, Jaime M Reyes, Julia di Iulio, Amanda Souza, Christopher J Ott, Justin M Roberts, Rhamy Zeid, Thomas G Scott, Joshiawa Paulk, Kate Lachance, Calla M Olson, Shiva Dastjerdi, Sophie Bauer, Charles Y Lin, Nathanael S Gray, Michelle A Kelliher, L Stirling Churchman, James E Bradner
ABSTRACT

Processive elongation of RNA Polymerase II from a proximal promoter paused state is a rate-limiting event in human gene control. A small number of regulatory factors influence transcription elongation on a global scale. Prior research using small-molecule BET bromodomain inhibitors, such as JQ1, linked BRD4 to context-specific elongation at a limited number of genes associated with massive enhancer regions. Here, the mechanistic characterization of an optimized chemical degrader of BET bromodomain proteins, dBET6, led to the unexpected identification of BET proteins as master regulators of global transcription elongation. In contrast to the selective effect of bromodomain inhibition on transcription, BET degradation prompts a collapse of global elongation that phenocopies CDK9 inhibition. Notably, BRD4 loss does not directly affect CDK9 localization. These studies, performed in translational models of T cell leukemia, establish a mechanism-based rationale for the development of BET bromodomain degradation as cancer therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
NVP-2, ≥98% (HPLC)
Sigma-Aldrich
dBET6, ≥98% (HPLC)
Millipore
Benzonase® Nuclease, Purity > 99%, Effective viscosity reduction and removal of nucleic acids from protein solutions