Skip to Content
Merck
  • Development of Diallylimidazolium Methoxyacetate/DMSO (DMF/DMA) Solvents for Improving Cellulose Dissolution and Fabricating Porous Material.

Development of Diallylimidazolium Methoxyacetate/DMSO (DMF/DMA) Solvents for Improving Cellulose Dissolution and Fabricating Porous Material.

Polymers (2019-05-15)
Airong Xu, Lin Chen, Yongxin Wang, Rukuan Liu, Wentian Niu
ABSTRACT

Cellulose is the most abundant natural biopolymer, with unique properties such as biodegradability, biocompability, nontoxicity, and so on. However, its extensive application has actually been hindered, because of its insolubility in water and most solvents. Herein, highly efficient cellulose solvents were developed by coupling diallylimidazolium methoxyacetate ([A2im][CH3OCH2COO]) with polar aprotic solvents dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), and N,N-dimethylacetamide (DMA). Attractively, these solvents showed extraordinarily powerful dissolution performance for cellulose (e.g., 26.1 g·100g-1) in [A2im][CH3OCH2COO]/DMSO(RDMSO = 1.01 solvent even at 25 °C), which is much more advantageous over previously reported solvents. To our knowledge, such powerful cellulose solvents have not been reported before. The cellulose dissolution mechanism is proposed to be of three combined factors: (1) The hydrogen bond interactions of the H2, H4 and H6 in [A2im]+ and the carboxyl O atom in [CH3OCH2COO]-, along with the hydroxyl H atom and O atom in cellulose, are main driving force for cellulose dissolution; (2) the dissociation of [A2im][CH3OCH2COO] by DMF increases the anion and cation concentrations and thus promotes cellulose dissolution; (3) at the same time, DMF also stabilizes the dissolved cellulose chains. Meanwhile, the porous cellulose material with a varying morphologic structure could be facially fabricated by modulating the cellulose solution concentration. Additionally, the dissolution of cellulose in the solvents is only a physical process, and the regenerated cellulose from the solvents retains sufficient thermostability and a chemical structure similar to the original cellulose. Thus, this work will provide great possibility for developing cellulose-based products at ambient temperatures or under no extra heating/freezing conditions.