Skip to Content
Merck
  • A Top-down Approach to Elucidate the Role of Matrix-Bound Phosphoproteins in Control of Collagen Biomineralization.

A Top-down Approach to Elucidate the Role of Matrix-Bound Phosphoproteins in Control of Collagen Biomineralization.

Biomacromolecules (2015-05-27)
Alexander J Lausch, Eli D Sone
ABSTRACT

The periodontium is the set of tissues responsible for tooth anchorage, and consists of interconnected layers of mineralized and unmineralized tissues (bone, ligament and cementum). The ligament-cementum interface is a particularly elegant example of biological control of mineralization and the controlling factors are poorly understood. Here we use a tissue-based in vitro model of mineralization, in which sections of demineralized mouse jaw remineralize with the same selectivity as found in vivo, to probe the molecular mechanism of control over collagen mineralization in the periodontium. Removal or enzymatic cleavage of noncollagenous proteins have very similar effects: a reduction in the rate of remineralization that is much more drastic in cementum than in dentin. The periodontal ligament does not mineralize within experimental parameters even after protein removal/digestion. Dephosphorylation results in a slight reduction in mineralization in dentin and cementum. Understanding the mechanisms controlling selective mineralization in the periodontium will help elucidate the molecular factors controlling collagen biomienralization, and provide inspiration for the development of scaffolds for regeneration of hard-soft tissue interfaces.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, SAJ first grade, 20.0-26.0%
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Sucrose, SAJ first grade
Sigma-Aldrich
Potassium hydroxide solution, 0.1 M in ethanol
Sigma-Aldrich
Potassium hydroxide solution, 0.1 M in isopropanol
Sigma-Aldrich
Formic acid, JIS special grade, ≥98.0%
Sigma-Aldrich
Potassium hydroxide solution, 0.5 M in ethanol
Sigma-Aldrich
Potassium hydroxide solution, 0.5 M
Sigma-Aldrich
Potassium hydroxide solution, 0.1 M
Sigma-Aldrich
Potassium hydroxide solution, 1 M
Sigma-Aldrich
Sucrose, JIS special grade
Sigma-Aldrich
Potassium hydroxide solution, 0.02 M in ethanol
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
D-Serine, ≥98% (TLC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Potassium hydroxide, anhydrous, ≥99.95% trace metals basis