Skip to Content
Merck
  • NO-donating oximes relax corpora cavernosa through mechanisms other than those involved in arterial relaxation.

NO-donating oximes relax corpora cavernosa through mechanisms other than those involved in arterial relaxation.

The journal of sexual medicine (2014-05-21)
Bart Pauwels, Charlotte Boydens, Kelly Decaluwé, Johan Van de Voorde
ABSTRACT

Erectile dysfunction (ED), as well as many cardiovascular diseases, is associated with impaired nitric oxide (NO) bioavailability. Recently, oxime derivatives have emerged as vasodilators due to their NO-donating capacities. However, whether these oximes offer therapeutic perspectives as an alternative NO delivery strategy for the treatment of ED is unexplored. This study aims to analyze the influence of formaldoxime (FAL), formamidoxime (FAM), and cinnamaldoxime (CAOx) on corporal tension and to elucidate the underlying molecular mechanisms. Organ bath studies were carried out measuring isometric tension on isolated mice corpora cavernosa (CC), thoracic aorta, and femoral artery. After contraction with norepinephrine (NOR), cumulative concentration-response curves of FAL, FAM, and CAOx (100 nmol/L-1 mmol/L) were performed. FAL-/FAM-induced relaxations were evaluated in the absence/presence of various inhibitors of different molecular pathways. FAL, FAM, and CAOx relax isolated CC as well as aorta and femoral artery from mice. ODQ (soluble guanylyl cyclase-inhibitor), diphenyliodonium chloride (nonselective flavoprotein inhibitor), and 7-ethoxyresorufin (inhibitor of CYP450 1A1 and NADPH-dependent reductases) substantially blocked the FAL-/FAM-induced relaxation in the arteries but not in CC. Only a small inhibition of the FAM response in CC was observed with ODQ. This study shows for the first time that NO-donating oximes relax mice CC. Therefore, oximes are a new group of molecules with potential for the treatment of ED. However, the underlying mechanism(s) of the FAL-/FAM-induced corporal relaxation clearly differ(s) from the one(s) involved in arterial vasorelaxation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetovanillone, ≥98%, FG
Sigma-Aldrich
1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one, powder
Sigma-Aldrich
(±)-Miconazole nitrate salt, imidazole antibiotic
Sigma-Aldrich
4′-Hydroxy-3′-methoxyacetophenone, 98%
Supelco
(±)-Miconazole nitrate salt, Pharmaceutical Secondary Standard; Certified Reference Material
Miconazole nitrate, European Pharmacopoeia (EP) Reference Standard
USP
Miconazole nitrate, United States Pharmacopeia (USP) Reference Standard
Supelco
Tetraethylammonium chloride, for electrochemical analysis, ≥99.0%
Sigma-Aldrich
Tetraethylammonium chloride, BioUltra, for molecular biology, ≥99.0% (AT)
Sigma-Aldrich
Apamin, from bee venom, ≥95% (HPLC)
Sigma-Aldrich
Tetraethylammonium chloride, ≥98% (titration)
Sigma-Aldrich
Nω-Nitro-L-arginine, ≥98% (TLC)
Sigma-Aldrich
Apamin, synthetic, ≥97% (HPLC)
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
USP
Dimethyl sulfoxide, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Dimethyl sulfoxide, European Pharmacopoeia (EP) Reference Standard
Supelco
Dimethyl sulfoxide, for inorganic trace analysis, ≥99.99995% (metals basis)
Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, JIS special grade, ≥99.0%
Sigma-Aldrich
Dimethyl sulfoxide solution, 50 wt. % in H2O
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, SAJ first grade, ≥99.0%