Skip to Content
Merck
  • Physiological and molecular responses of the earthworm (Eisenia fetida) to soil chlortetracycline contamination.

Physiological and molecular responses of the earthworm (Eisenia fetida) to soil chlortetracycline contamination.

Environmental pollution (Barking, Essex : 1987) (2012-08-08)
Dasong Lin, Qixing Zhou, Yingming Xu, Chun Chen, Ye Li
ABSTRACT

This study aims to evaluate toxic effects of exposure to chlortetracycline (CTC) in soil on reproductive endpoints (juvenile counts and cocoon counts), biochemical responses, and genotoxic potentials of the earthworm Eisenia fetida. Results showed that juvenile counts and cocoon counts of the tested earthworms were reduced after exposure to CTC. The effective concentrations (EC(50) values) for juvenile and cocoon counts were 96.1 and 120.3 mg/kg, respectively. Treatment of earthworms with CTC significantly changed the activity of catalase (CAT), superoxide dismutase (SOD) and glutathione S-transferase (GST). An increase in malondialdehyde (MDA) indicated that CTC could cause cellular lipid peroxidation in the tested earthworms. The percentage of DNA in the tail of single-cell gel electrophoresis of coelomocytes as an indication of DNA damage increased after treatment with different doses of CTC, and a dose-dependent DNA damage of coelomocytes was found. In conclusion, CTC induces physiological responses and genotoxicity on earthworms.

MATERIALS
Product Number
Brand
Product Description

Millipore
Chlortetracycline Selective Supplement, suitable for microbiology
Sigma-Aldrich
Chlortetracycline hydrochloride, suitable for fluorescence, BioReagent, from Streptomyces aureofaciens, ≥85.0% (HPLC)
Sigma-Aldrich
Chlortetracycline hydrochloride, ≥91.0% dry basis (HPLC)
Supelco
Chlortetracycline hydrochloride, VETRANAL®, analytical standard