Saltar al contenido
Merck

The DUX4-HIF1α Axis in Murine and Human Muscle Cells: A Link More Complex Than Expected.

International journal of molecular sciences (2024-03-28)
Thuy-Hang Nguyen, Maelle Limpens, Sihame Bouhmidi, Lise Paprzycki, Alexandre Legrand, Anne-Emilie Declèves, Philipp Heher, Alexandra Belayew, Christopher R S Banerji, Peter S Zammit, Alexandra Tassin
RESUMEN

FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent inherited muscle disorders and is linked to the inappropriate expression of the DUX4 transcription factor in skeletal muscles. The deregulated molecular network causing FSHD muscle dysfunction and pathology is not well understood. It has been shown that the hypoxia response factor HIF1α is critically disturbed in FSHD and has a major role in DUX4-induced cell death. In this study, we further explored the relationship between DUX4 and HIF1α. We found that the DUX4 and HIF1α link differed according to the stage of myogenic differentiation and was conserved between human and mouse muscle. Furthermore, we found that HIF1α knockdown in a mouse model of DUX4 local expression exacerbated DUX4-mediated muscle fibrosis. Our data indicate that the suggested role of HIF1α in DUX4 toxicity is complex and that targeting HIF1α might be challenging in the context of FSHD therapeutic approaches.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-Dux4 Antibody, clone 9A12, clone 9A12, from mouse