Saltar al contenido
Merck

Roux-en-Y gastric bypass enhances insulin secretion in type 2 diabetes via FXR-mediated TRPA1 expression.

Molecular metabolism (2019-11-02)
Xiangchen Kong, Yifan Tu, Bingfeng Li, Longmei Zhang, Linxian Feng, Lixiang Wang, Lin Zhang, Huarong Zhou, Xianxin Hua, Xiaosong Ma
RESUMEN

Roux-en-Y gastric bypass surgery (RYGB) improves the first phase of glucose-stimulated insulin secretion (GSIS) in patients with type 2 diabetes. How it does so remains unclear. Farnesoid X receptor (FXR), the nuclear receptor of bile acids (BAs), is implicated in bariatric surgery. Moreover, the transient receptor potential ankyrin 1 (TRPA1) channel is expressed in pancreatic β-cells and involved in insulin secretion. We aimed to explore the role of BAs/FXR and TRPA1 in improved GSIS in diabetic rats after RYGB. RYGB or sham surgery was conducted in spontaneous diabetic Goto-Kakizaki (GK) rats, or FXR or TRPA1 transgenic mice. Gene and protein expression of islets were assessed by qPCR and western blotting. Electrophysiological properties of single β-cells were studied using patch-clamp technique. Binding of FXR and histone acetyltransferase steroid receptor coactivator-1 (SRC1) to the TRPA1 promoter, acetylated histone H3 (ACH3) levels at the TRPA1 promoter were determined using ChIP assays. GSIS was measured using enzyme-linked immunosorbent assays or intravenous glucose tolerance test (IVGTT). RYGB increases GSIS, particularly the first-phase of GSIS in both intact islets and GK rats in vivo, and ameliorates hyperglycemia of GK rats. Importantly, the effects of RYGB were attenuated in TRPA1-deficient mice. Moreover, GK β-cells displayed significantly decreased TRPA1 expression and current. Patch-clamp recording revealed that TRPA1-/- β-cells displayed a marked hyperpolarization and decreased glucose-evoked action potential firing, which was associated with impaired GSIS. RYGB restored TRPA1 expression and current in GK β-cells. This was accompanied by improved glucose-evoked electrical activity and insulin secretion. Additionally, RYGB-induced TRPA1 expression involved BAs/FXR-mediated recruitment of SRC1, promoting ACH3 at the promoter of TRPA1. The BAs/FXR/SRC1 axis-mediated restoration of TRPA1 expression plays a critical role in the enhanced GSIS and remission of diabetes in GK rats after RYGB.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-β-actina monoclonal antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Anti-TRPA1 Antibody, from rabbit, purified by affinity chromatography